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I. REPORT SUMMARY

This report reviews progress from the Boston University and Northeastern University
research groups of our AFOSR University Research Initiative grant.. The subcontract to
Professor John Daugman of Harvard and Cambridge Universities will be separately filed.
The report lists books and articles, summaries of research, PhD students who were partially
supported by the grant, conferences and colloquia that were partially supported by the grant,
and selected abstracts of key articles.

1. Three Neural Networks Courses and Conferences at the Wang Institute

In May of 1990, 1991, and 1992, week-long international courses and conferences on
neural networks were held at the Wang Institute of Boston University. The purpose of the
courses was to introduce scientists, engineers, and students to the core principles, mecha-
nisms, and architectures of neural network research. The course was attended each year by
a capacity crowd of 300 people from many countries and states of the USA.

The three conference topics were Neural Networks for Automatic Target Recognition;
Neural Networks for Vision and Image Processing; and Neural Networks for Learning, Recog-
nition, and Control. The 1992 course was typical in offering 10 lecturers who lectured 8 hours
a day, interspersed with active discussions during meals and after each day's dinner. The
conference presented 19 invited lecturers whose topics ranged from the biological to the tech-
nological, and 69 refereed poster presentations. Copies of the three course and conference
programs are attached.

The 1991 conference, on vision and image processing, led to a book of the same name
that was published to good reviews by MIT Press. (See book 2 in the publications list.) The
book's preface follows:

EDITORIAL PREFACE
Neural Networks for Vision and Image Processing

Cambridge, MA: MIT Press, 1992
This book provides a resource for teaching and research about the vitally important

areas of biological vision and image processing technology. Vision is one of the most im-
portant sources of information for supporting intelligent human behavior, as well as a key
competence for designing new types of intelligent computers and machines. The book brings
together recent research contributions from leading experimentalists and modelers, who pre-
sented their results at a conference in May, 1991 at the Wang Institute of Boston University.
The interdisciplinary nature of the conference is reflected in its range of topics, from visual
neurobiology and psychophysics through neural and computational modelling to technolog-
ical applications. Such a program format acknowle.ges the important role that biological
data and models have had on the development of technological applications, and the role
that computational models have had on guiding the progress of experimental vision research.

The book's chapters mirror this interdisciplinary perspective. They are grouped accord-
ing to the phenomena and problems that they address, rather than the methods that are
used to analyse them. The first eleven chapters concern visual processes that are often



described as "preatteitive". Such processes tend to occur at earlier stages of brain process-
ing, albeit stages that can include visual cortex, and call proceed automatically without the
intervention of attention, learning, and object recognition The remaining six chapters con-
sider -'attentive" processes. that tend to occur at later stages of brain l)rocessing, and that
critically involve mechanisms of attention, learning, and object recognition. The distinction
between preattentive and attentive processes is one of emphasis, at least in psychophysical
studies of human vision, because every human response to a sensory input engages all the
neural stages that occur between input and output. The distinction is nonetheless a useful
one, and it has become increasingly well articulated with every advance in correlating visual
percepts with the neural processing stages that generate them.

The "preattentive" chapters are themselves broken into two groupings. The first six
chapters primarily consider processes underlying the perception of static images. Brightness,
color, texture, shading, stereo, and form are subjects of inquiry here. The next five chapters
consider processes underlying the perception of moving images. Some of these chapters
also analyse why static and moving images need to be processed by different, but parallel,
mechanisms.

All of the chapters address the fact that visual properties are not processed indepen-
dently. For example, Stuart Anstis describes some of the remarkable effects on perceptual
recognition of reversing image brightness and color. Jacob Beck and William Goodwin docu-
ment how texture segregation depends on the interchange of light and dark values, or red and
green hues in an image. Farley Norman and James Todd discuss psychophysical experiments
that shed light on a number of the perceptual constraints and processes that are relevant
in human perccption of three-dimensional form, both of static and moving images. V.S.
Ramachandran explores the perception of form through experiments that include contrast
reversals, illusory contours, filling-in, and apparent motion.

Alex Pentland provides an analysis of models for analysing vision as a dynamic system,
rather than a static one, and discusses a model for surface representation that includes
concepts from Kalman filtering and orthogonal wavelets, as well as their possible neural
interpretation in terms of receptive fields and cortical networks. Another new approach
to understanding surface representation, especially in the context of the shape-from-shading
problem, is presented by Pierre Breton, Lee Iverson, Michael Langer, and Steven Zucker, who
combine properties of shading flow fields, a concept related to networks of oriented receptive
fields, with relaxation labelling, a form of cooperative computation, to cope concurrently with
surface, material, and light source compatibility constraints. The final chapter in the static
vision cluster is by Stephen Grossberg and Lonce Wyse, who describe a biologically motivated
model for parallel sel'aration of multiple scenic figures from one another and from their
background onto different surface representations, while suppressing scenic noise, by using a
combination of opponent processing, boundary..segmentation, and filling-in mechanisms.

The first chapter concerning the perception of moving objects is by Paolo Gaudiano,
who also uses mechanisms of opponent processing to provide a unified explanation of retinal
data about X and Y cells, particularly differences in their sustained and transient responses.
The fact that both static figure-ground separation and the retinal processing of transient
information both use similar opponent processing mechanisms illustrates the need for in-
terdisciplinary vision research that clarifies how similar neural mechanisms can be used for
different perceptual purposes. David Fay and Allen Waxman consider tie neurodynamics of
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image velocity extraction using a multi-level model that also begins with retina-like process-
ing, and implement a model for video rate image velocity extraction on a PIPE computer.

The next chapter, by Stephen Grossberg, analyses why parallel cortical systems are
needed to process information about static and moving objects, and outlines a unified model
for these parallel streams in terms of a global symmetry principle that has enabled expla-
nations to be offered of many previously intractable perceptual and neural data, including
data about illusory contours, filling-in, apparent motion, and perceptual aftereffects. The
chapter by Stephen Grossberg and Ennio Mingolla further develops a model of the cortical
motion processing stream to suggest a solution of the global aperture problem, which clarifies
how cooperative processes can contextually eliminate local ambiguities in the computation
of motion direction.

The chapter by Robert Desimone begins the cluster concerned with attentive vision and
pattern recognition by summarizing recent neurobiological experiments and concepts con-
cerning attentive processing by the inferior temporal (IT) cortex, area V4 of the prestriate
visual cortex, and the pulvinar. Gail Carpenter, Stephen Grossberg, Natalya Markuzon,
John Reynolds, and David Rosen then describe how adaptive resonance theory (ART) net-
works can learn to categorize and focus attention upon predictive combinations of visual
features, and can use predictive feedback to drive a memory search leading to new atten-
tional foci that conjointly minimize predictive error and maximize predictive generalization.
The chapter by Stephen Grossberg and David Somers describes how cortical models of preat-
tentive boundary segmentation and attentive object recognition can rapidly bind spatially
distributed feature detectors into synchronized oscillations within a single processing cycle,
and thereby prevent these features from becoming attached to representations of the wrong
visual objects. Alan Rojer and Eric Schwartz describe a computational model of visual at-
tention capable of rapidly selecting motor fixation points for a space-variant sensor which
uses Bayesian and Hough transform concepts in a hardware system for reading license plates
of moving vehicles in real time. David Casasent describes neural networks for learning and
recognition that are amenable to implementation in optical hardware. Robert Hecht-Nielsen
describes a neural network for image analysis that has been applied to problems of sorting,
target recognition, and medical image analysis.

We wish to thank the authors for their careful selection and preparation of the material
in their chapters, Cynthia Bradford and Diana Meyers at the Center for Adaptive Systems
for their help in preparing the text and index, and the Life Sciences Directorate of AFOSR
for its financial support of the conference.

Gail A. Carpenter
Stephen Grossberg
Boston, Massachusetts
January, 1992
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BOSTON UNIVERSITY

A World Leader in Neural Network Research and Technology
Presents

Two Major Events on the Cutting Edge

Neural Networks: Froom Fourndations to Applications

May 6 - 11, 1990
A self-contained systematic course by leading neural architects

who know the field as only its creators can.

Neural Networks for Automatic Target Recognition

May 11 - 13, 1990
An international research conference presenting INVITED and CONTRIBUTED papers,

herewith solicited, on one of the most active research topics in technology today.

Each event offers a unique opportunity to master vital information.
Both events together provide a week of rare intellectual

excitenment and practical hands-on experience.

A limited number of student fellowships are available.

Sponsored by Boston University's Wang Institute, Center for Adaptive
Systems, and Graduate Program in Cognitive and Neural Systems

with partial support from the Air Force Office of Scientific Research.



InrternatiNonwal Conf.,erencen .,Neural N.'%.,rk-,,aid tihe I1 8 Annual I[.,%SNeu ral N etwMorks: eeting, and in% ited speaker at the V-0i) ILIE/ INNS International Joint fer-

From Foundations ence on Neural Networks.

App l DANIEL BULLOCK, asitant professor of psychologu/yand CNS. is developer ofto Applcations neural network models for real-time adapi,,e..ensory-motor control of arm
movernert• and eye-arm coordination, notably the VITE and FLETE models for

A lay 6 - 11, 1990 adaptive control of multi-joint trajectories; an editor of Neural Networks; session
chairman for adaptive sensory-motor control and robotics at the 1957 IEEE First

This self-contained systematic five-day course is based on the International Conference on Neural Net%%orks and the 1988 Annual INNS

orld's leading graduate curriculum in the technology, computa- Meeting. and in% ited speaker at the 190•f IEEE/INNS International Joint Confer-
g ch cence on Neural Networks He , well-knoi, n fur his research in cognlt, e and

tion, mathematics, and biology of neural networks. Developed at developmental psychology.
the renowned Center for Adaptive Systems (CAS) and the graduate
program in Cognitive and Neural Systems (CNS) of Boston Univer- JOHN MERRILL. assistant professor of mathematics and CNS. is developing
sitv, the course will be taught by the full CAS/CNS faculty, as well neural network models for adaptive pattern recognition, speech recognition, rein-"forcement learning, and adaptive timing in problem-solvng behaj.or. He
as by distinguished guest lecturers. An extraordinary range and received his Ph D. in mathematics from the University of Wisconsin at Madison,
depth of models, methods, and applications will be presented. and completed postdoctoral research an computer science and linguistics at
Evening discussion sessions with CNS faculty, and presentations by Indiana University.
industry leaders in neural network technology will be offered.

S- COURSE GUEST LECTURERS
COURSE FACULTY FROM BOSTON UNIVERSITY

FEDERICO FAGGIN, cofounder and president of Synaptics, Inc., received a
STEPHEN GROSSBERG, Wang Professor of CNS, as well as professor of mathe- doctoral degree in physics from the Uni% ersity of Padua, Italy, in 1965. In 1968
-nanuc psychology, and biomedical engineering, is one of the world's leading he joined the R & D laboratory of Fairchild Semiconductor an Palo Alto, Calafor-
neu:al network pioneers and most versatile neural architects. The founder and nia. At Fairchild he developed the Sallicon Gate Technology: the first viable high-
I O•. president of the International Neural Net-. ork Society (INNS), he is also speed and high-density MOS process using a doped polycrystallne silicon gate
iounder and coeditor in chief of the INNS journal Neural Networks, an editor of electrode. The same year, Faggin also designed the first commercial circuit using
,he journals Neural Computation. Cognitive Science, and IEEE Expert, founder Silicon Gate Technology. the 3708, an S-bit analog multiplexer. Prior to leaving
a-d director of the Center tor Adapti% e Systems. general chairman of the 19S7 Fairchild, he was group leader in charge of the development of ad% anced process
IEEE F:rst International Con'erence on Neural Networks (ICNN); chief scientist technologies. In 1970 he joined the Intel Corporation with the responsibility of
cf Hocht-Nielsen Neurocomputer Co (HNC); and one of four technical consult- designing what was to become the first microprocessor - the 4000-family, also
an-s to the national DARPA Neural Network Study. Dr. Grossberg has intro- called MCS-4. The product was introduced in the market in November 1971.
duced key- models and computa;.:-al methods of content addressable memory., Faggin was in charge of all of the microprocessor development activity at Intel
,,ssoc:a'uve learning. competiti% e learning, competitive and cooperati e decision from inception until October 1974, 1i hen he left the company to start Zilog, Inc.
r•k':ng, vision and image processing, speech and language processing, adapti% e At Intel, F.,ggun and Hal Feeney designed the 800., the first S-bit microprocessor.
r,,tern recognition, cognitive information processing. reinforcement learning, introduced in 1972; later. Faggin conce,%ed the SOSO and designed it with M.
a-,'d adaptive sensory-motor control He is author of 200 articles and books about Shima. The 8080 was introduced in the market in 1974 and was the first high-per-
ne"-al networks, the latter including Neural Networks and Natural Intelligence formance S-bit microprocessor. Before leaving Intel in 1974. Faggin was
\MIT Press), Neural Dynamics of Adaptive Sensory-Motor Control (with department manager with responsubilit. for ;ol MOS design activity except for

M\chae; Kupersteun: "ergamon Press). The Adaptive Brain, Volumes land II, d% namic RAMs. At Zilog, Faggun conceied the ZSO microprocessor family and
'E:sev:er 'North-Holland Press), Studies of Mind and Brain (Reidel Press), and directed the design of the ZSO-CPU. Faggin was cofounder, pr,.sident, and CEO
the Iorthcoming Pattern Recognion by Self-Organizing Neural Networks (• ith of Zilog from inception until the end of 1950. After a brief period as Group VP of

Gail Carpenter). Exxon Enterprises. Zilog's parent company, in 1981. Faggin started a new
company in 1982 and became its president. This company, Cygnet Technologies,

G AIL CARPENTER is professor of mathematics and CNS, codirector of the CNS developed and introduced in the market a voice and data communication
G-aduate Program: 10S9 vice president of the International Neural Network peripheral for the personal computer. Faggin is the author or coauthor of many
S~ciety (INNS); orcanzation chairman of the 19SS INNS annual meeting, session technical papers and is inventor or co-inventor of many U.S and foreign patents.
chairman at the 1989 and 1900 IEEE/INNS International Joint Conference on He is the recipient of the 198S Marconi Fellowship Award for his contributions to
Neural Networks; one of four technical consul.tants to the national DARPA the birth of the microprocessor.
Neural Network Study; an editor of the journals Neural Networks, Neural Com-
Funtation, and Neural Nýetu ork Review; and a member of the scientific advisory ROBERT HECHT-NIELSEN, cofounder and Chairman of the Board of Directors
board ot HNC. She is a leading neural arrhitect who has carried out adsanced of Hecht-Nielsen Corporation (HNC), is a pioneer in neurocomputer technology
research :n vision, nerve impulse generation (Hodgkin-Huxley equations). and and the application of neural networks, and is a recognized leader -n the field.
cen'nple\ biological rhythms Dr Carpenter is especially well-known for her Prior to the formation of HNC, he founded and managed the neurocomputer de-
,e:nal work on de• eloping the adaptive resonance theory architectures (ARtj 1. % elopment and neural network applications at TRW (1983 - 1986) and Motorola
2. and 3) for adaptive pattern recognition. (1979 - 19S3). He has been active in neural network technology and neurocom-

puters since 1961. Dr. Hecht-Nielsen is a graduate of Arizona State University,
MICHAEL COHEN, associate professor of computer science and CNS, is a where he was an NDEA Fellow, an ASU Fellow, and two-time chapter president
!eading architect of neural networks for content addressable memory (Cohen- of Pi Mu Epsilon, with B.S. (1971) and Ph.D. (1974) degrees in mathematics. He is
Grossberg model), vision (Feature Contour System), and speech (Masking Fields), currently a visiting lecturer an the Electrical Engineering Department at the
an editor of Neural Networks, session chairman at the 1987 IEEE International University of California at San Diego. He is the author of more than twenty
Conference on Neural Networks and the 1989 IEEE/INNS International Joint technical reports and papers on neurocomputers, neural networks, pattern recog-
Corference on Neural Net% orks; and a member of the DARPA Neural Network nition, signal proce.sing algorithms and artitacial intelligence. Hecht-Nielsen isa
Studv panel on Simulation/Emulation Tools and Techniques. He was trained at Brain and Behavioral Sciences Associate
the \Massachusetts Institute ot Technology, Harvard University, and New York
University. where he did research on transformational grammars, telecommuni- MICHAEL I. JORDAN is an assistant professor of brain and cognitive sciences at
cations. and image procesing before beginning his distinguished work on neural the Ma.ssachuetts. In,titute of Technology. One of the key developers of the
noework, at Boston Universitv. recurrent back propia•:tion algorithms. Professor Jordan's re.-eirch is concerned

with learning in recurrent networks and with the uec of networks as- torward
ENNIO %IINGOLLA, a.sitanit profe,.or of psychology and CNS, is holder of model., in planning and control. His interest in interdiciplinary research oil
one of the tirst patented neural network architectures for vision and Image neural net% ork% is tounded in his training for a bachelor's degree in psychology.
'rocL-, ng IBhoundary Contour Sy,t,,m). co-or:ani,/er of the Third Work-hop oin a nua-ter' d,.gree in nhtth,..atu¢.l and a doctoral degree i cogntu'.e science in
I iuman .rnd Machine Viion in 1085, editor ot the journals Neural Networks and IQ,5 tromn the Uni er.,ilt of California at Sain Diego. He w.ls a po.tdo,'toral
F,-? l,,lwaI I'svcholhgy: a utu1-uner ol the DARPA Neural Network Study panel on recarcher in conrputer -cicnke at tihe Lni% ersty it Massalusett.- Amnher.st Iron
•\Id.ipi ac Knowledge l'ro,-esing. conault.ant to hE. I. du I'Pont de Nen~ourr,, Inc.; I oSt, to it SS Ibtor- .s-,uming hi.- pr-e.nt polition at MIT.
w-.-oun ch.airman for vi.ion and inage price.-ing it tle IS7 IIEVE First
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CCuOSreI.RC), 10:30 A.M. - 12:311 P.m. C \RI'INTER AND GROSSBERG),

e ASSOCIATIVE LEARNING: Deriation (f as-P.M.
ciati'e equations for short-teraD memory and INTRODUCTION TO ADAPTIVE RESONANCE

long-term memory; overview and analysis of THEORY: Absolutely stable recognition
associative outstars, instars, computational learning, role of learned top-down epecta-
maps, avalanches, counterpropagation nets, tions; attentional priming; matching by 2/3
adaptih e bidirectional associative memories; Rule; adaptive search; self-controlled hypothe-

. -ianalysis of unbiased associative pattern sis testing, direct access to globally optimal
learning by asynchronous parallel sampling recognition code; control of categorical

Registration, 1 - 5 p.m. channels, classification of associati\ e learning coarseness by attentional vigilance, compari-
laws. son with relevant behavioral and brain data to

Reception, 5 -S p.m. emphasize biological basis of ART computa-
Lunch at Wang Institute 12:30 - 1:30 p.m. tions.

AFTERNOON SESSION (PROI-ESSORS ANALYSIS OF ART 1: Computational analysis
CARPENTER AND \IINGOLLA), of ART I architecture for self-organized real-
1:30 - 3:30 P.M. time hypothesis testing, learning, and

MORNING SESSION (PROFESSOR recognition of arbitrary sequences of binary
GROSSBI RGi, S - 10 A.M. COMBINATORIAL OPTIMIZATION input patterns.

PERCEPTRONS: Adeline, Madeline, delta rule,
HISTORICAL OVERVIEW: Introduction to gradient descent, adaptive statistical Lunch at Wang Institute, 12:30 - 1:30 p.m.
the binary, linear, and continuous-nonlinear predictor, nonlinear separability.
s:reams of neural network research: AFTERNOON SESSION 'PROFESSOR
McCulloch-Pitts, Rosenblatt, von Neumann; INTRODUCTION TO BACK PROPAGATION: CARPENTER). 1:30 - 3:30 P.M.Anderson, Kohonen, Widrow; Hodgkin-HAneo, Hartline-Ratliff, Grossberg. Supervised learning of multidimensional non-linear maps, NETtalk, image compression, ANALYSIS OF ART 2: Computational analysis
CONTENT ADDRESSABLE MEMORY. Clas- robotic control. of ART 2 architecture for self-organized real-
s::ication and analysis of neural network time hypothesis testing, learning, and
models for absolute! stable CAM. Models Coffee Break 3:30 - 4 p.m. recognition for arbitrary sequences of analog
include: Cohen-Grossberg, additive, or binary input patterns.
shunting, Brain-State-In-A-Box, Hopfield, AFTER\OO\ SESSION tPROI ESSOR

oltzmann Machine. .lcCulloch-Pitts, JORD i.k\, 4- 6 P.M ANALYSIS OF ART 3. Computational analysis
masking field, bidirectional associatix e of ART 3 architecture tor self-organized real-
memory. RECENT DEVELOPMENTS OF BACK PROPA- time hypothesis testing, learning, and

CATION: This guest tutorial lecture will recognition within distributed network
COOPERATIVE AND COMPETITIVE pro\ ide a systematic revie%, of recent de% el- hierarchies, role of chemical transmitter
DECISION MAKING. Analysis of asvnchro- opments of the back propagation learning dynamics in forming a memor% representation
nous ' ariable-load parallel processing b' network, focusing especially on recurrent back uistinct from short-term memory and long-
shunting competiti e networks; solution of propagation variations and applications to term memory; relationships to brain data
noise-saturation dilemma, classification of outstanding technological problems. concerning neuromodulators and synergetic
feedforward networks: automatic gain ionic and transmitter interactions.
control, ratio processing, Weber law, total Dinner at Wang Institute, 6 - 7:30 p.m.
ýctivity normalization, noise suppression, Coffee Break, 3:30 - 4 p.m.
pattern matching, edge detection, bright- I-VXNINC SLSSION. 7:30 - S-30 P.M.
hess constancy and constrast; automatic DISCUSSIO\S Wl'] H TUTORS AFTERNOON SESSION iPROFESSOR
compensation for variable illumination or INFORM AL PRESENT \TIONS CARPE\TERn, 4-6 P.M.
other background energy distortions;
classification of feedback networks; ANALYSIS OF ART 3, CONTINUED
influence of nonlinear feedback signals, '. - : . - . - - SLO AITNFN RNnotaly igmod sgnal, o patern• , • l•• • SELF-ORGANIZATION OF INVARIANT
notably sigmoid signals, on pattern PATTERN RECOGNITION CODES Computa-
transformation and memory storage, MORNING SESSION (PROFESSOR tional analysis of self-organizing ART architec-
%', nner-take-all choices, partial memory GROSSBERG), S - 10 A.M. tures for recognizing noisy imagery undergo-

compression, tunable filtering, quantiza- ing changes in position, rotation, and size.
tion and normalization of total activity, ADAPTIVE PATTERN RECOGNITION:
emergent boundary segmentation; method Adaptive filtering; contrast enhancement; NEOCOGNITRON: Recognition and comple-
of jumps for classifying globally consistentand incorsistent colasmsify loae decision competitive learning of recognition categories; tion of images by hierarchical bottom-up
schemesi adaptive vector quantization; self-organizing filtering and top-down attentive feedback.

computational maps; statistical properties of
Coffee Break, 10- 10:30 a.m. adaptive weights; learning stability and Dinner at Wang Institute, 6 - 7:30 p.m.causes of instability.

I \'I.\I(; SESSION. 7:311 - S:341 P.M.

Coffee Break, 10 - 10:30 a.m. I)ISCLSSIONS WITI TLTORS
INI (IRM.Al. I'RI.SI:NTATIONS



-i stion. adaptix c' gain control by cercbcllar adapti% e critics, conditioned reinforcers,
learning; position-dependent sampling from role of motivational feedback in focusing

MORNING SESSION EIROI LSSOIRS spatial maps, predictive motor planning and attention on predictive data, attentional
GROSSIILRG AND MINGOLLA. 8 - 1t A.M. execution. blocking and unblocking; adaptively

timed problem solving; synthesis of
N ISION AND IMAGE rROCESSING Introduc- SPEECH PERCEPTION AND PRODUCTION. perception, recognition, reinforcement,
tU07 to Boundary Contour Syst.m for emergent Hidden Markov models, self organization of recall, and robotics mechanisms into a
segmentation and Feature Contour System for speech perception and production codes, total neural architecture, relationship to
.".,'Ing-in after compensation for variable cighth nerve Average Localized S% nchrony data about h% pothalamus, hippocampus,
,!!umination; image compression, orthogonali- Response; phoneme recognition by back neocortex, and related brain regions.
zation, and reconstruction; multidimensional propagation, time delay networks, and vector
i:itering, multiplexing, and fusion. quantization. Coffee Break, 3:30 - 4 p.m.

Coffee Break 10 - 10:30 a.m. Dinner at Wang Institute, 6 - 7:30 p.m. AFTERNOON SESSION

(DR. HECFT-NIELSEN), 4 - 6 P.M.
MORNING SESSION (PROFESSORS EVENING SESSION, 7:30 -5:30 P.M.
GROSSBERG AND MINGOLLA), DISCUSSIONS WITH TUTORS RECENT DEVELOPMENTS IN THE NEURO-
M,,0 - 12:30 P.M. INrORMAL PRESENTATIONS COMPUTER INDUSTRY: This guest

tutorial will provide an overview of the
VISION AND IMAGE PROCESSING: Coherent growth and prospects of the burgeoning
boundarv detection, recularization, self- neurocomputer industry by one of its
scajing, and completion; compensation for .3 most important leaders.
variable illumination sources, including
artificial sensors (infrared sensors, laser MORNING SESSION WPROFESSORS Dinner at Wang Institute,
ra-dars): filling-in of surface color and form, COHEN AND GROSSBERGE. S- 10 A.M. 6-7:30 p.m.
S-D form from shading, texture, stereo, and
motion; parallel, processing of static form and SPEECH PERCEPTION AND PRODUCTION. EVENING SESSIO\, 7:30 - S:30 P.M.
,o% ing form; motion capture and induced Disambiguation of coarticulated vowels and DISCL SSIONS WITH TL TORS
motion, s) nthesis of static form and motion consonants; dynamics of working memory; INFORMAL PRESENTATIONS
•orm representations. multiple-scale adaptive coding by masking

fields; categorical perception; phonemic
Lunch at Wang Institute, 12:30 - 1:30 p.m. restoration; contextual disambiguation of

speech tokens; resonant completion and - . W, , Wi
AFTERNOON SESSION 'PROFESSORS grouping of noisy variable-rate speech
BULLOCK AND GROSSBERGI, streams. MORNING SESSION (DR. FAGGINi.
"...-3:30 P.M. 5 - 10 -4M.

Coffee Break, 10 - 10:30 a.m.
-\DAPTIVE SENSORY-MOTOR CONTROL AND VLSI IMPLEMENTATION OF NEURAL
ROBOTICS Overiview of recent progress in \IORNI\G SESSIO\ PROFESSORS NETWORKS -THE PROBLEM: This is a
adaptive sensory-motor control and related GROSSBERG AND MiERRILL. four-hour self-contained tutorial on the
robotics research. Reaching, grasping, and 10:30 A.M. - 12:30 P.M. application and development of VLSI
,ransporting objects of variable mass and form techniques for creating compact real-
under visual guidance in a cluttered environ- REINFORCEMENT LEARNING AND PREDIC- time chips embodying neural network
ment will be used as a target behavioral TION. Recognition learning, reinforcement designs for applications in technology.
competence to clarify subproblems of real-time learning, and recall learning are the 3 R's of Re-iew of neural networks from a
ada-::ve sensory-motor control. The balance neural network learning. Reinforcement hardware implementation perspective;
of the tutorial will be spent detailing neural learning clarifies how external events interact hardware requirements and alterna-
netx• ork modules that solve various sub- with internal organismic reqjirement toe.trigger learning processes capable of focusing tives; dedicated digital implementationproblems. Topics include: Self-organizing of neural networks.
net%%~ orks for real-time control of eve move- attention ijoon and generating appropriate

, a mactions toward motivationally desired goals.m en.., arm m ovem ents, and eye-arm coordi-Co f eB ak 10 - 0:0 a m
nat:.n, learning of invariant body-centered A neural network model will be derived to Coffee Break, 10 - 10:30 a.m.
,arget position maps; learning of intermodal show how reinforcement learning and recall

associative maps; real-time trajectory forma- learning can self-organize in response to MORNING SESSION (DR. FAGGIN),
Zion: adaptive vector encoders; circular asynchronous series of significant and 10:30 A.M. - 12:30 P.M.
reactions between action and sensory feed- irrelevant events. These mechanisms also
back. adaptive control of % ariable speed mo% e- control selective forgetting of memories that VLSI IMPLEMENTATION OF NEURAL
ments, varieties of error signals; supportive are no longer predictive, adaptive timing of NETW'ORKS - A NOVEL APPROACH:
behax ioral and neural data. behavioral responses, and self-organization of Neuromorphic design methodologygoal-directed problem solvers. using VLSI CMOS technology; applica-

Coffee Break, 3:30 - 4 p.m. tions and performance of neuromorphic
Lunch at Wang Institute, implementation; comparison of neuro-

\tTERNOON SESSION I'ROFESSORS 12:30 - 1:30 p.m. morphic and digital hardware; future
1(L LLOCK AND COHEN), 4 -6 P.M. prospectus.

AFTER:RNOON SESSION tI'ROr'ESSOIS
ADAPTIVE SENSORY-MOTOR CONTROL AND GROSSIBERG AN) MI.RRILL), Lunch at Wang Institute,
ROBOTICS: Inverse kinematics; attomatic 1:30- 3:3) P.M. 12:30 - 1:30 p.m.
,'mpns1atIi or unexpected perturbhation.;
"",dependent adaptive control of force and po- REINFORCEMENT LEARNING AND PREDIC- End of the course.

TION: Analysis of drive repre.entation,.



* Neural Networks for Automatic Target Recognition
.Ma 11- 13, 1990

-.. **,•.

This research conference at the cutting . ._•- . •
edge of neural network science and
technology will bring together leading MORNING SESSION MORNING SESSION
experts in academe, government, and 8 A.M. - 12 NOON 8 A.M. - 1 P.M.
industry to present their results on auto-
matic target recognition in invited PROFESSOR ALEX WAIBEL, PROFESSOR NABIL FARHAT,
lectures and contributed posters. CARNEGIE-MELLON UNIVERSITY UNIVERSITY OF PENNSYLVANIA
Automatic target recognition is a key "Patterns, Sequences, and Variability: "Bifurcating Networks for Target
process in systems designed for vision Advances in Connectionist Speech Recognition"
and image processing, speech, and time Recognition"
series prediction, adaptive pattein recog- DR. FRED WEINGARD,
nition, and adaptive sensor,-motor DR. CHRISTOPHER SCOFIELD, BOOZ-ALLEN AND HAMILTON
control and robotics. It is one of the areas NESTOR, INC. "Current Status and Results of Two
emphasized oy the DARPA Neural Net- "Neural Network Automatic Target Major Government Programs in Neural
works Program, and has attracted intense Recognition by Active and Passive Network-Based ATR"
research activities around the world. Sonar Signals"

Coffee Break
Coffee Break

Call for Papers - ATR Poster Session: A DR. MICHAEL KUPERSTEIN, NEUROGEN
featured poster session on ATR neural PROFESSOR STEPHEN GROSSBERG, "Adaptive Sensory Motor Coordination
network research will be held on May 12, BOSTON UNIVERSITY Using the.INFA.NT Controller"
1990. Attendees who wish to present a "Recent Results on Self-Organizing
poster should submit three copies of an ATR Networks" DR. YANN LE CUN,
abstract (one single-spaced page), AT & T LABORATORIES
postmarked by March 1,1990, for PROFESSOR GAIL CARPENTER, "Structured Back Propagation Networks
refereeing. Include with the abstract the BOSTON UNIVERSITY for Handwriting Recognition"
name, address, and telephone number of "Target Recognition by Adaptive
the corresponding author. Mail to: ATR Resonance: ART for ATR" DR. STEVEN SIMMES, SAIC
Poster Session, Neural Networks Confer- "Massively Parallel Approaches to
ence, Wang Institute of Boston University, Lunch 12 noon -1 p.m. Automatic Target Recognition"
72 Tyng Road, Tyngsboro, MA 01879.
Authors will be informed of abstract ac- AFTERNOON SESSION 1 - 4 P.M. Discussion
ceptance by March 31,1990.

DR. KEN JOHNSON, End of the research conference.
HUGHES AIRCRAFT COMPANY

"The Application of Neural Networks to
CONFERENCE PROGRAM the Acquisition and Tracking of

Maneuvering Tactical Targets in High
- -aI -Clutter IR Imagery"

REGISTRATION 1 - 5 P.M. DR. ALLEN WAXMAN,
MIT LINCOLN LAB _. A

RECEPTION 3- 5 P.M. "Invariant Learning and Recognition of 3s r
3D Objects from Temporal View 6

EVENING SESSION 5-7:30 P..L Sequences" -

DR. PAUL KOLODZY, MIT LINCOLN LAB 4.

DR. BARBARA YOON, DARPA "A Multi-Dimensional ATR System" F _A
"DARPA Artificial Neural Networks

Technology Program: Automatic Coffee Break

POSTER SESSION 4 - 7 P.M.
DR. JOE BROWN, MARTIN MARIETTA"-Multi-Snsor ATR Using Neural Dinner at Wang Institute 7 - 8 p.m. ] _2

Nets"

DR. ROBERT HECHT-NIELSEN, HNC
"Spatit'tem•poral Attention Focusing
by E\p't.tation F"cedback" 1

l'Participanis are on their own for dinner.)



BOSTON UNIVERSITY

A World Leader in Neural Network Research and Technology
presenits

Two Major Events on the Cutting Edge

Neural Networks: From Fomidations to Applications
May 5-10, 1991

A self-contained svstcniatic course
by leading neural architects.

Neural Networks for Vision and Image Processing

May 10-12, 1991

An international research conference presenting INVITED and CONTRIBUTED papers,
herewith solicited, on one of the most active research topics in science and technology today.

Each event offers a unique opportunity to master vital information.
Both events together provide a week of rare intellectual

excitement and usefulness.

Special stu 4ent registration rates are available.

Sponsored by Boston University's Wang Instilute, Center for Adaptive
System.s, and Graduate Program in Cognitive and Neural Systems

with partial support from the Air Force Office of Scientific Research.

_________________,_____l_________________ -__



1N 1 two rks: . BL DAI LI.OCK. a.,',iate rrt,.,,or of ""'""chology id CNS. i..Neural Networks: dvehoper ot icu'ral network mndcl, for re.rI'n€ .iptive sn,,bry.mohir
"Found tion cintrol of arm movements and eve-arm coordination, notably the' VITlt and

From Foundations to RETE Model, for adaptive control of multi-joint trajectorit.-e, editor of
Neural Nte'.Ats; s..es,,ion chairman for ;daptive . ni v-motor control and

Applications robotics at the 1987 IEEE First International Conferenc`e on neural networks
,and the 1)."98 Annual INNS Meeting- and invited ,;peakerat the 1990 IEEE/
INNS lnt[,rnational Joint Conference on Neural Networks and the 199(0

....... .......... M 5 - 1, 1991 International Symposiumi on Neural Networks for Sensory an-'lMotor
Sy..tems. He is also well-known for his re.Nearch in cognitive aid develop-

This self-contained systematic five-day course is based on the gradoate mental psychology.
curriculum in the technology. computation, mathematics, and biology of
neural networks d, veloped at the renowned Center for Adaptive Systems JOHN MERRILL, assistant professor of mathematics and CNS. is develop-
(CAS) and the graduate- program in Cognitive and Neural Systems (CNS) (f ing neural network models for adaptive pattern recognition, speech
lioqton Univereitv. This year's curriculum refines" and updates the
successful course held at the Wang Institute in May 19901. The course wilnbe taught by CASiCNS faculty, as well as by distinguished guest lecturers solving behavior, after having received his Ph.D. in matheenatics from the

be tugh byCASCNSfaclty aswel as y dstiguihedguet lctuers University of Wisconsin at Madison, and completed postdoctoral rebearch
at the beautiful and superbly equipped campus of the Wang Institute. An' in o f scin an Madisonc and Universty.
extraordinary range and depth of models, methods, and applications will be in computer science and linguistics at Indiana University.
presented with ample opportunity for interaction with the lecturers and
oth.,r participants at the daily discussion sections, meals, receptions, and COURSE GUEST LECTURERS
breaks that are included with registration. At the 1990 course, participants
came from twenty countries and thirty-five states of the United States. FEDERICO FAGGIN, cofounder and president of Synaptics. Inc., received

a doctoral degree in physics from the University of ladua, Italy. in 1-965. In
COURSE FACULTY FROM BOSTON UNIVERSITY 196S he joined the R & b laboratory of Fairchila Semiconductor in Palo

Alto, California, where he developed the Silicon Gate Technology. In 1970,
he joined the Intel Corporation, where he designed the first micro-

STEPHEN GROSSBERG, Wang Professor of CNS, as well as professor of processor. With Hal Feeney, he designed the first n-bit kicro-focessor, and
mathematics, psychology, and biomedical engineering, is one of the world's wrceso. ih al Feener , he designee fit SicroprocessDr. an

with M. Shima. the first high-performance B-bit microprocessor. D r. Figgin
leading neural network pioneers and most versatile neural architects. The was cofounder. president, and CEO. from its inception until the efid of 19S0,
founder and 19cS president of the International Neural Network Society at Zilog where he conceived the ZS0 microprocessor family and directed(INNS), he is also founder and coeditor in chief of the INNS journal, Ne'lal dsgofte$0PUHetaedsgntTholgs n 192adirce

Veluvr.f; an editor of the journals Neutral Comnputation, Coogntwe Siewnce, and design of the ZSO-CPn. He started Cygnet Technologies ir 1982 and

IEEt Elpert; founder and director of the Center for Adaptive Systems:; ecaneitsppresidagin is thoe author or coauthor of many

general chairman of the 19S7 IEEE First International Conference on Neural tentsa He is invent or th e of man y U.S. and torhis

Networks (ICNN). and one of four technical consultants to the National patents. He is the recipient of the 19SS Marconi Fellowship Award 'for his

DARPA Neural Network Study'. Dr. Grossberg has introduced key models work on the microprocessor.

and computational methods of content addressable memory, associative ROBERT HECHT-NIELSEN, cofounder and chairman of the board of
learning. competitive learning, competitive and cooperative decision directors (f Hecht•ielen Corporation (HNC). is i pioneer in neuro-
making, vision and image processing, spe-ch and language processing, computer technology and the application of neural networks. Prior to the
adapti'se pattern recognition, cognitive information processing. formation of HNC. he founded and managed the neurocomruter develop-
ment learning, and adapti% e sensory-motor control. He is author ot 200 'MmationsoatHTC, h(19oun9ed and Motorolaarticles and books about neural networksI. ment and neural network applications it TRWV (0 98.3-19,6 adMoorl

(1079-1IS3). Dr. Hecht-Nielsen is a graduate of Arizona State University

with B.S. (1971) and Ph.D. (1974) degrees in mathematics. He is currently aGAIL CARPENTER is a professor of mathematics and CNS; codirector of svisiting ltueatheEerilEnneigDprmntfteUiers'iy
viiig lecturer at the Electrical Engineering Department of the Universt

the CNS graduate program; 1989 vice president of the International Neural of California at San Diego and the author of a book and many technical
Network Society (INNS); organization chairman of the 1988 INNS annual reports and papers on neurocomputers, neural networks, pattern recogni-
meeting; session chairman at the 19S9 and 1990 IEEE. INNS International tion, signal processing algorithms, and intelligence.
Joint Conference on Neural Networks; one of four technical consultants to
the National DARPA Neural Network Study; and an editor of the journals MICHAEL I. JORDAN. assistant professor of brain and cognitive sciences
.\'eural aetorks. .\'ciurel Coimphoatsnc and Nural Network Reeu She in vision, at the Massachusetts Institute of Technology, is one of the key developers

nerve impulse generation (Hodgkin-Huxley equations), and complex of the recurrent back propagation algorithms. Dr. Jordan's research is

biological rhythms. Dr. Carpenter is especially well-known for her seminal concerned with learning in recurrent networks and with the use of
work on developing the adaptive resonance theory architectures (ART 1. 2, networks as forward models in planning and control. His inteneest in

and 3) for adaptive pattern recognition for which she and Dr. Grossberg interdisciplinary research on neural networks is founded in his training for
hold a series of patents. a bachelor's degree in psychology, a master's degree in mathematics, a

doctoral degree in cognitive science, and postdoctoral research in computer

MICHAEL COHEN, associate professor of computer science and CNS. is a science, and has continued in his present position at the Massachusetts
Institute of Technology.

leading architect of neural networks for content addressable memory
(Cohen-Grossberg model), vision (Feature Contour System), and speech
(Masking Fields); editor of Meural ,Netorks, session chairman at the 1987 ANDREW G. BARTO is associate professor of computer and information
IEEE International Conference on Neural Networks and the 1989 IEEE/ science at the University of Massachusetts at Amherst. He received a B.S.

INNS International Joint Conference on Neural Networks; and member of in mathematics (1970) and a Ph.D. in computer science 11975) from the

DARPA Neural Network Study Panel on SimulationiEmulation Tools and University of Michigan with a thesis concerning cellular automata. Since

techniques. He was trained atithe Massachusetts Institute of Technology, 1977, Dr. Barto has developed neural network learning algorithms that do

Harvard University, and New York University, where he did research on not require reliable and detailed instructions from a knowledgeable
transformational grammars, telecommunications, and image processing environment..A t present. he is exploring links between research in animal

before beginning his distinguished work on neural networks at Bo!ton behavior, adaptive and optimal control, and learning methods for biologi-

University. cally plausible networks.

tN\Ib INGLLAanasitnt rofsso ofpsyholgy nd NSis is- ALEX WAIBEL is a research computer .,cienti.,t in the Computer .cience.
ENNI0 MINGOLLA, an ass.itant profe.ssor of psychology and CNS, us co-

in% entDr with De. Gro.sberg 'Wed n n rpartment and the Center for Machine Translation of Carnegie Mellon
,rchitectures for visi n and image professing tIpoundary Contour System); University. I le receiv'ed a B.S. (1979) from the .Masschusetts In.titute of

co-organizer of the Third Workshop otn I umanand Machine *I.ion 15 Technob'-. and an l., in electrical engineering and computer science
ditr of ihe journals Ne'u ral .;n',As and Eo'iial P.yhul,,.. a member ot (14.St))and M.D. in computer science (14) from Carnegie Mellon

!rthe )ARA Neural Network Study Panel on Adaptive K ll Univeritv. In ti$•7, 8A he was a res•,arch scientist at the ATlR Telephony

1'roct-nsing..setsion chairman for \'iionand Image r•'roc.sung at the 987 1 eearch'I.aboratori.s in .saka. Japan, where he started and codirecte.i
I'EEE" Fir.st Intt'rhation.il Confierencet on Neurnl Networks and the 14M-fl group for neural network based spe•'clh recognition. Or. Waibel has
SAnnual INNS Meet'ing: and unvuttcd .|p,..|ker it the I~ml~ l EEFil\\ publi..hed mowre than tort% p.lx'r, on ,pevh r rkc'ognition and -vnthai.nd

i lnttrn.tionai loint Conference on Neural Network% .und the I1100) Neural neuromompoting, nlchne k-naring. and nachine tranlation.
Inform.ation l'rt'.cngSy'l•oium (NII'S).



ASSOCIATIVE LEARNING: Derivation of \Mt1•\I\. '-I... I'I III S -•( A.I'I\ 'S.R4
- .r. .. .. . . associative eqluation.s for .short-term memory .1ND ;,III.R() lii."i AM.-i2.'u PM.

• Schedule and long-tcrmn, emory. Overview.and
........... analysis of associative out*tars, instars, INTRODUCTION TO ADAPTIVE

*. ..... computational maps, avalanch.s, real-time RESONANCE THEORY: Absolutely stable
learning of temporally ordered l.ts. Analysis recognition learning; role of learned top-

of unbiased asociative pattern learning by down expectations; attenional priming;

"" asynchronous parallel sampling channels, matching by 2/3 Rule; adaptive search, ielf-

_Chassification of associative learning laws. controlled hypothesis testing; direct access to
globally optimal recognition code;'control of

Lunch at Wang Institute, 12:30 - 1:30 p.m. categorical coarseness by ittentional vigi-
Registration 4 - 6 p.m. lance; comparison with relevant behavioral

•e\I---pmC ERH(ON SESSION DIROFESSORS aad brain data to emphasize biological basis
Reception -S -8p.m. C:ARPENTER. HOSSBiERG. AND N33;OLLA3. of ART computations.

t .3",1 - 3:311 NI'

fir ASSOCIATIVE LEARNING, continued ANALYSIS OF ART 1: Computational
analysis of ART I architecture for self-

NEOCOGNITRON: Recognition and organized real-time hypothesis testing,
II . ROFESSORGROSSBERG. completion of images by a hierarchy of learning, and recognition of arbitrary

bottom-up adaptive filters and top-down sequences of binary input patterns.

HISTORICAL OVERVIEW: Introduction to attentive feedback. Lunch at Wang Institute, 1230-1:30 p.m.

the binary, linear, and continuous-nonlinear
streams of neural network research: PERCEPTRONS: Delta rule, gradient :FTERNOO\ SESSION
McCulloch-Pitts, Rosenblatt, von Neumann; descent, adaptive statistical predictor, IPROFESSOR CARI'ENTERI. !..'0- 3.k'e P.M.

Andeison, Kohonen, Widrow; Hodgkin- nonlinear separability, Adaline, Madaline. ANALYSIS OF ART 2: Computtional

Huxley, Hartlin.-Ratliff, Grossberg. INTRODUCTION TO BACK PROPAGA- analysis of ART 2 architecture for self-

COOPERATION AND COMPETITION: TION: Supervised learning of multidimen- organized real-time hypothesis testing,

Analysis of asynchronous variable-load sional nonlinear maps. learning, and recognition for arbitrary

parallel processing by cooperative-competi- Coffee Break, 3:30 - 4 p.m. sequences of analog or binary input patterns.

tive networks; solution of noise-saturation ANALYSIS OF ART 3: Computational
dilemma; classification of feedforward \FTERV(X?\ .ESSIO\ ,'ROFESSOR IORD,\. anAlysis of ART 3 architecture for self-
networks: automatic gain control, ratio 4 -" P aI'M rsi o ART 3aarchiteiuresein-
processing, Weber law, total activity normal- organized real-time hypothesis testing,
ization, noise suppression, patterin matching, RECENT DEVELOPMENTS OF BACK learning, and recognition within distributed
edge detection, brightness constancy and PROPAGATION: Review of recent develop- network hierarchies; role of chemical

contrast; automatic compensation for variable ments of the back propagation learning transmitter dynamics in forming a medium-

illumination or other background energy network, especially focusing on recurrent term memory representation distinct from
distortions; classification of feedback back propagation variations and applications short-term memory and long-term memory;

networks: influence of nonlinear feedback to outstanding technological problems. relationships to brain data concerning

signals, notably sigmoid signals, on pattern Dinner at Wang Institute, 6a- 7:15 p.m. nromotor ansi nd
Dinnr a Wan Intitue, - 715 ~m. transmitter interactions.transformation and memory storage, winner-

take-all choices, partial memory compression, E% ENING SESSION. 7.5-S.1 3 P.M.
tunable filtering, quantization and normal- DISCUSSIONS WITI I TUTORS AND
ization of total activity, visual short-term INFORMAL PRESENTATIONS AFTERNOON SESSION

memory, behavioral contrast, working (PROFESSOR CARPENTER). 4 - P.M.

memory for temporally ordered events, PREDICTIVE ART: Design of self-organizing
synchronous oscillations in neural coding. PR-

"systems capable of modifying recognition

CONT;:NT ADDRESSABLE MEMORY: MOR.XING SESSION tI'ROFESS.ORS GROS.S;FERG codes in real-time based upon their predictive
Classification and analysis of neural network AND MIINGOLLA). S - II AM success or failure, such that ver. different
models for absolutely stable CAM. Models inputs may learn the same prediction, vet

include: Cohen-Grossberg. additive. ADAPTIVE PATTERN RECOGNITION: similar inputs may learn different predictions.

ý.-hunting, Brain-State-ln-A-Box, Hopfield, Adaptive filtering; derivation and analysis of ARTMAP applications.
Boltzmann Machine, McCulloch-Pitts, instar avalanches, competitive learning
masking field, bidirectional associative models, and 3-level universal associative SELF-ORGANIZATION OF INVARIANT
memorv, maps; adaptive vector quantization; self-

organizing feature maps; statistical properties Computational analysis of self-organizini
Coffee Break 10 - 10:30 a.m. of adaptive weights; learning stability and ART architectires for recognizing noisy

causes of instability: applications to cortical imagery undergoing changes in position.

St• • (.~ ' ,l I'.'k •L•.;,.Il 1t.. feature maps and travelling sah.sman rotation, and size.
problem. Dinner at Wang Institute. 7-1t p.m.

CONTENT ADDRESSABLE MEMORY.
e,,ntinueet Coffee Break, 10 - 10:30 a.m. , " I' I



Coffee Break, 3:30 - 4 p.m. Thlee mechani.ns also control sciective
forgetting of memories that aie no longer

. ...l I'll:RNt 'I~gl5•.( \. I'Rs III "'4 ljs IIL I~ 4 predictive.adaptive timing of betiavioni
\I0RNIG( .lS.ESltOX 01,01T y*'l )S 0,0,1.' ( R{G<lllt % (.t•Sl•{;.4- "\ re.s.ptn.st.-,,and .,el f-torganizaition of goal-

,\'\I) \IINCI.I.Ai W- \ .\1 ADAPTIVE SENSORY-MOTOR directed problem solvers.

VISION AND IMAGE PROCESSING: PLANNING AND CONTROL: Self-organiza-
Introduction to central problems of biological tion of a body-centered representation of 3-D Lunch at Wang Institute, 12:30 - 1:30 p~m.

vision; principles of complementarity, space, self-organization of planned sequences A l .- t)N, wuiR()IES )R.• I I.
uncertainty, symmetry, and resonance in of motion actions, as in handwriting, at any, (0ROSSIIERG. AND R 1.1, - -., I.

.contemporary vision theory; derivation and realizable positions and sizes in the work-
.inalvsis of the Boundary Contour System space; planned performance from memory REINFORCEMENT LEARNING AND

13CS) for emergent boundary segmentation of and under visual guidance, flexible use of PREDICTION. Analysis of drive representa-

edges; texture segmentation; brightness tools of variable length; inverse kinematics; tions, adaptive critics, conditioned reinforcers,

perception; illusory contours; 3-D figure- automatic compensation for unexpected role of motivational feedback in focusing,
ground separation; processing of artificial perturbations; independent adaptive control attention on predictive data; attentional

sensor data (infrared, laser radar, magnetic of force and position by spinal circuits; blocking and unblocking; adaptively timed

resonance); neurobiological correlates, adaptive control of position-dependent problem solving; gated dipole and other

moment arms and motor plant nonlinearities opponent processes; synthesis of perception,
Coffee Break, 10 - 10:30 a.m. by cerebellar learning; triphasic bursts during recognition, reinforcement, recall, and

* MOR\ING SESSION. cI'WROFESS()RS GROSSIBERG rapid movement and breaking. robotics mechanisms into a total neural
"* AND MI.GOLLAI. 11.3,14 - 12..3 IP.M. architecture; neurobiological correlates.

Dinner at Wang Institute, 6 - 7.15 p.m.

VISION AND IMAGE PROCESSING: Coffee Break, 3:30-4 p.m.
Deveopmet o ~ uifid thory f 3D fom EENING SESSION. 7:15 1%\.34P

: Development of A unified theory of 3-13 form DI.C'SSIO\S WITH TL TOR5 AND INFORMAL AFTERNOON SEESSION. tDR. HECHT.NIEL.-EN',.
and motion perception; derivation and PRESENTATIONS 4 - t, I..
analysis of a Motion BCS for solving the
global motion segmentation problem; anaIl-- RECENT DEVELOPMENTS IN THE

sis of the different perceptual geometries of NEUROCOMPUTER INDUSTRY: Overview

static and motion vision (opposite orienta- of the grou th, recent developments, and

tions differ by 901, motion directions by 1 SO:); \IORNING SESSION oI'R0Fi•ESQRS COHEN. -prospects of the burgeoning neurocomputer

tradeoff between resonance and reset toGROSERG AND AIBEL'..' - 1i' A. industry.

achieve coherent motion segmentation with- SPEECH PERCEPTION AND PRODUC- Dinner at Wang Institute, 6- 7:15 p.m.
out massive perceptual smearing; unified TION: Hidden Markov models; self organi-
explanations of classical and recent psycho- zation of speech perception and production EVENING SESSION. 7:13 - 5:304 P.M.
physical data about short-range and long- codes; phoneme recognition by back propaga- DISCLSSIONS %\ ITH TLTORS AND INFORMAL
range apparent motion, motion capture, tion; time delay networks; learned vector PRESENTATIONS
induced motion, motion aftereffects; compari- quantization; LR parsers; dynamic program-
son between motion and attention; neurobio- ming and Viterbi alignment; disambiguation Ing
logical correlates, of coarticulated vowels and consonants;

Lunch at Wang Institute, 12:30 - 1:30 p.m. dynamics of working memory; multiple-scale MiORNING SESSION
adaptive coding by masking fields; categori- (DR. FAGGIN). S1- A0 .. M.

-F.ERNOON SESSION. uIROFESORS 13ILOCK cal perception; phonemic restoration;
A.%D GROSSBERGi. 1.31- 33 '1 P\I contextual disambiguation of speech tokens; VLSI IMPLEMENTATION OF NEURAL

resonant completion and grouping of noisy NETWORKS - THE PROBLEM: Applica-
ADAPTIVE SENSORY-MOTOR CONTROL variable-rate speech streams. tion and development of VLSI techniques for
AND ROBOTICS: Overview of recent creating compact real-time chips embodying
progress in adaptive sensory-motor control Coffee Break, 10 - 10:30 a.m. neural network designs for applications in
and related robotics research. Reaching. technology. Review of reural netiworks from
grasping, and transporting objects of variable MORNiNG SESSION t'ROFES.OR GROS'SI3ERG'. a hardware implementation perspective;

mass and form under visual guidance in a 11..-1 A.M.- 12:.0 P.M. hardware requirements and alternatives;
cluttered environment will be used as a target SPEECH PERCEPTION AND dedicated digital implementation of
behavioral competence to clarify subproblems PRODUCTION, continued neural networks.
of real-time adaptive sensory-motor control;
self-organization of reactive and planned eye REINFORCEMENT LEARNING AND Coffee Break, 10- 10:30 A.M.
movements; universal adaptive gain control PREDICTION: Recognition learning, MORNING SESSION (DR. F:\,GIN)
by cerebellar learning; networks for variable- reinforcement learning, and recall learning i1o130 A.M. - 12.311 P.M.
speed control of multi-joint arm and speech are the 3 R's of neural network learning.
articulator trajectories; self-organization of Reinforcement learning clarifies how external VLSI IMPLEMENTATION OF NEURAL
trajectorv control parameters in real-time via events interact with internal organismic NETWORKS - A NOVEL APPROACH:
rhythmic random sarnplig of the workspace; requirements to trigger learning processes Neuromorphic de.,ign methodology using
analysis of behavioiral and neural data about capable of focusing attention upon and VLSI CMOS technotlogy; applications and
hum1in and monkey arm movements: generaiting appropriate actions toward performance of neuromorphic in.iplementa-
introduction to the Vector Associative Map motivationally desired goals. A neural tion; comparison of neuromorphic and digital
for V.A%\) mokiel for autononmous, re.il-tinie network nodel will be derived to show how hardware; future prospectus.
c'.n'r bas~ed learning of multidimensional reinforcement learning and recall learning can
, V.it,,V, M Cascades for ,.patial orientation self-organi'e in re.-,pon.,e to a.ynchronous Lunch at Wang Institute, 12:30 -;"1:30 P.M.
.ld "-l0tial-to-nioijtr mapping. s.rie,. si !.ignificafit and irrelevant vvent%. End of-t.e course.

i n cift ore



Neural Networks for Vision and Image Processing
•. .. A lay 10- 12, 1991

This international research conference on a
topic at the cutting edge of science and
technology will bring together leading experts
in academe, government, and industry to MORNING SESSION 8 A.M. - 12:40 P.M. MORNING SESSION S A.M. - 1 P.M.

present their results on vision and image 8 - 8:50 a.m. 8 - 8:50 a.m.
processing, in invited lectures and contrib- PROFESSOR V. S. RAMACHANDRAN, PROFESSOR JACOB BECK, UNIVERSITY
uted posters. Topics range from visual UNIVERSITY OF CALIFORNIA, SAN OF OREGON
neurobiology and psychophysics through DIEGO "Preattentive Visual Processing"

computational modelling to technological "Interactions Between 'Channels'

applications. Vision and image processing is Concerned with the Perception of 8:50 - 9:40 a.m.

one of the areas emphasized by the DARPA Motion, Depth, Color, and Form" PROFESSOR JAMES TODD, BRANDEIS

Neural Networks Program, and has attracted 8:50 - 9:40 a.m. UNIVERSITY Anasis of Motion"

intense research activities around the world. PROFESSOR STEPHEN GROSSBERG,
BOSTON UNIVERSITY 9:40 - 10:30 a.m.

CALL FOR PAPERS - VIP POSTER "A Neural Network Architecture for DR. ALLEN M. WAXMAN, MIT LINCOLN
SESSION: A featured poster session on 3-D Vision and Figure-Ground LAB
neural network research related to vision and Separation" "Neurodynamics of Real-Time Image
image processing will be held on May 11, Velocity Extraction"
1991. Attendees who wish to present a poster 9:40 - 10:30 a.m.
should submit three copies of an abstract (one PROFESSOR ENNIO MINGOLLA, Coffee Break, 10:30 - 11 a.m.
single-spaced page), postmarked by March 1, BOSTON UNIVERSITY

1991, for refereeing. Include with the abstract "A Neural Network Architecture for 11 - 11:50 a.m.

the name, address, and telephone number of Visual Motion Segmentition" PROFESSOR ERIC SCHWARTZ, NEW
YORK UNIVERSITY

the corresponding author. Mail to: Pcster Coffee Break, 10:30 - 11 a.m. "Biologically Motivated Machine

Session, Neural Networks Conference, Wang 11 - 11:50 a.m. Vision"

Institute of Boston Uni% ersity, 72 Tyng Road, PROFESSOR GEORGE SPERLING, NEW
Tyn.,sboro. MA 01S79. Authors will be YORK UNIVERSITY 11:50 - 12:40 p.m.
informed of abstract acceptance by March 31, "Two Systems of Visual Processing" PROFESSOR ALEX PENTLAND,
IQ1,I. MASSACHUSETTS INSTITUTE OF

11:50 - 12:40 p.m. TECHNOLOGY
CONFERENCE PROGRAM DR. ROBERT DESIMONE, NATIONAL "The Optimal Observer: Design of a

INSTITUTE OF MENTAL HEALTH Dy'namically Responding Visual
"Attentional Control of Visual System"

__Perception: Cortical and Subcortical
Mechanisms" Discussion

REGISTRATION, 2 - 5 P.M. Lunch at Wang Institute, 12:40 - 2 p.m. End of the research conference.

RECEPTION, 3 - 5 P.M. AFTERNOON SESSION, 2 - 4:30 P.M.

EVENING SESSION, 5 - 7:30 P.M. 2- 2-50 p.m.
PROFESSOR GAIL CARPENTER, BOSTON

S- 5:50 p.m. UNIVERSITY
PROFESSOR JOHN DAUGMAN, "Neural Network Architectures for 6
CAMBRIDGE UNIVERSITY Attentive Learning, Recognition and

"*High-Confidence Personal Identifica- Prediction"
tion System Built from Quadrature 5 - *. E
Neural Filter" 2:50 - 3:40 p.m. 6 ...- I

DR. RALPH LINSKER, IBM T. J. WATSON 7
5:50-- 6:40 p.m. RESEARCH CENTER 2 0 00
PROFESSOR DAVID CASASENT, "New Approaches to Network _ 4
CARNEGIE MELLON UNIVERSITY Learning and Optimization" F _-

"CMU Hybrid Optical/Digital Neural 3:40-4:30 p.m.Net for Scene Anahysis" 3:70 4:0 m
e PROFESSOR STUART ANSTIS, UNIVER-

6:40 - 7:30 p.m. SITY OF TORONTO

DR. ROBERT HECHT-NIELSEN, HNC "My Recent Research on Motion
"Neu roconmpter for Image Analysis" erception" .3

POSTER SESSION AND REFRESH-

(Dinner not included with this evening,'- IENTS, 4:30 - 7:30 I'.M. A

Dinner at Wang Institute, 7:30-8:45 p.m.



BOSTON UNIVERSITY

NEURAL NETWORK
COURSES AND CONFERENCE

Course i1: Introduction and Foundations
May 9-12, 1992

A systematic introductory course on neural networks

Cour-se 2: Research and Applications.
May 12-14, 1992

Eigyht tutorials on current research and applications

Conference.: Neural Networks for
Learning, Recognition, and Control

May 14-16,, 1992
An international research conference presenting INVITED and CONTRIBUTED papers

Spon~sored by Boston University's w\amg Instititte, Center for Adiptive
Systems, and Department of Cognitive and Neural Systems,

with partial surport from the Air Force Office of Scientific Research



Neural Network COURSE GUEST LECTURERS

Courses JOHN DAUGMAN received both his BA (1976) and PhD (1983) at Harvard
University, where he subsequently joined the faculty and taught graduate

MAY9-14, 1992 and undergraduate courses in electrical engineering, computer science, and
psychology. His areas of research are computational neuroscience,

This self-contained, systematic, five-day course is based on the graduate cur- multidimensional signal processing and pattern recognition, and visual
riculum in the technology, computation, mathematics, and biology of neural neurophysiology. He serves as an editor of Brain Research and Neural Nctuwrks.
networks developed at the Center for Adaptive Systems (CAS) and the In 1988 he was awarded the Presidential Young Investigator Award by the
Department of Cognitive and Neural Systems (CNS) of Boston University. U.S. National Science Foundation. During 1989-1990 he was the inaugural
This year's curriculum refines and updates the successful course held at the Professor of the Toshiba Endowed Chair in Computer Science at the Tokvo
Wang Institute of Boston University in May 1990 and 1991. A new two-course Institute of Technology, and in 1991 he was elected a member of the faculty of
format permits both beginners and researchers to attend with profit. The biology at Cambridge University.
course will be taught by CASICNS faculty, as well as by distinguished guest
lecturers at the beautiful and superbly equipped campus of the Wang Insti- FEDERICO FAGGIN, cofounder and president of Synaptics, Inc., received a
tute. An extraordinary range and depth of models, methods, and applications doctoral degree in physics from the University of Padua, Italy, in 1965. In
will be presented. Interaction with the lecturers and other participants will 1968 he joined the R & D laboratory of Fairchild Semiconductor in Palo Alto,
continue at the daily discussion sessions, meals, receptions, and coffee breaks California, where he developed the Silicon Gate Technology. In 1970, he
that are included with registration. At the 1990 and 1991 courses, participants joined the Intel Corporation, where he designed the first microprocessor.
came from many countries and from all parts of the United States. With Hal Feeney, he designed the first 8-bit microprocessor, and with M.

Shima, the first high.performance 8-bit microprocessor. Dr. Faggin was
COURSE FACULTY FROM BOSTON UNIVERSITY cofounder, president, and CEO from its inception until the end of 1980 at

Zilog, where he conceived the ZSO microprocessor family and directed design
of the Z80-CPU. He started Cygnet Technologies in 1982and became itsSTEPHEN GROSSBERG, W\ang Professor and Chairman of CNS, as well as president. Dr. Faggin has written many technical papers and holds many U.S.

professor of mathematics, psychology, and biomedical engineering, is one of and foreign patents. He is the recipient of the 1988 Marconi Fellowship Award
the world's leading neural network pioneers and most versatile neural archi- for his work on the microprocessor.
tects. The founder and first president of the International Neural Network
Society (INNS), he is also founder and coeditor-in-chief of the INNS journal, MICHAEL I. JORDAN, assistant professor of brain and cognitive sciences at.\'eural .\etworks; an editor of the journals Neural Computation, Cogniti•e Scwnce, the Massachusetts Institute of Technology is a key developer of the recurrent
and Brain Reseah; founder and director of the Center for Adaptive Systems; back propagation algorithms. Professor Jordan's research is concerned with
general chairman of the 1987 IEEE First International Conference on Neural learning in recurrent networks and with the use of networks as forward
Networks (ICNN); and winner of the 1991 IEEE Neural Network Pioneer models in planning and adaptive control. His interest in interdisciplinary
.Award. Dr. Grossberg has introduced key trodels and computational meth- research on neural networks is founded in his training for a bachelor's degree
ods of content addressable memor, associative learning, competitive learn- in psychology, a master's degree in mathematics, a doctoral degree in
ing. competitive and cooperative decision making, vision and image cognitive science, and postdoctoral research in computer science and has
processing, speech and language processing, adaptive pattern recognition, continued in his present position at MIT. Professor Jordan has given
cognitive information processing, reinforcement learning, and adaptive numerous invited lectures in the U.S., Italy, France. and Japan. He has taught
sensor'-motor control. He is author of 200 articles and nine books about neu- in the Woods Hole summer school on Computational Neuroscience, the
ral networks. Connectionalist Models summer schools at Carnegie Mellon and UCSD, a:.d

was the co-organizer of the 1990 Cold Spring Harbor summer school onGAIL CARPENTER, professor of CNS and mathematics, is CNS director of Computational Neuroscience.
graduate studies; 1989 vice president of INNS; organization chair of the 1988
INNS annual meeting; and an editor of the journals Neural Netuwrks, Neural ERIC SCHWARTZ is professor of neural sciences at NYU, associate professor
Computation, and Brain Research. Since receiving a PhD in mathematics (1974), of computer science at the Courant Institute, and associate professor of
she has carried out research on neural models of vision, nerve impulse gener- psychiatry at NYU Medical Center. His research interests include
ation (Hodgkin-Huxley equations), and complex biological rhythms. Dr. Car- experimental studies of cortical visual architectures in monkeys and humans,
penter is especially known for her work on developing the adaptive and computational modeling of visual anatom%; physiology and function. He
resonance theory architectures (ART 1, 2, and 3) for adaptive pattern recogni- introduced the term "Computational Neuroscience" in 1983 as the title of ation and categor, learning, for which she and Dr. Grossberg hold a series of svmposium, which has recently appeared in book form. As a consultant with
patents. Her recent work incorporates ART modules into a family of neural Vision Applications, Inc., he has designed and built a miniaturized video
systems for supervised learning of binary inputs (ARTMAP) or analog inputs camera!actuatoricomputer system for performing real-time active vision, and
(Fuzzy ARTMAP). is currently applying design principles of active vision toward a variety of

commercial and defense applications.
ENNIO MINGOLLA, assistant professor of CNS and psychology, is co-
inventor with Dr. Grossberg of one of the first patented neural network archi- ALEX WAIBEL is a senior research computer scientist in the computer sciencetectures for vision and image processing (Boundary Contour System); department of Carnegie Mellon University, with joint appointments in the
co-organizer of the Third Workshop on Human and Machine Vision in 1985; Center for Machine Translation and the computational linguistics
editor of the journals Neural Netorks and Ecological Psychology; a member of department. He is also a University Professor of Informatik at Karlsruhe
the DARPA neural network study panel on Adaptive Knowledge Processing; University, Germany. He received a BS (1979) from the Massachusetts
session chair for Vision and Image Processing at the 1987 IEEE ICNN and the Institute ;f Technology, and an MS in electrical engineering and computer
1988 annual INNS meeting; and invited speaker at the 1990 International Joint science (1980) and PhD in computer science (1986) from Carnegie Mellon
Conference on Neural Networks and the 1990 Neural Information Processing University. Dr. Waibel has published many papers on speech recognition and
Symposium (NIPS). synthesis, neurocomputing, machine learning, and machine translation. His

1989 paper on Time-Delay Neural Networks was awarded both the IEEEDANIEL BULLOCK, associate professor of CNS and psychology, is a devel- Signal Processing Society's senior paper award (1991) and the ATR best paper
oper of neural network models for real-time adaptive sensory-motor control award (1990).
of arm movements and eve-arm coordination, notably the VITE and FLETE
models for adaptive control of multi-joint trajectories; editor of Neural Net- ALLEN WAXMAN received his BS in physics from the City College of New

ovr;:s; session chair for adaptive sensory-motor control and robotics at the York (1073) and his PhD in astrophysics from the Uni% crsit" of Chicago (1978).
1987 ICNN and the 1988 annual INNS meeting; and invited speaker at the HHe has served on the faculties of MIT, Weizman Institute of Science,
1990 IJCNN and the 1990 International Symposium on Neural Networks for Universitv of Maryland (Computer Vision Lib), and Boston University. SinceSensor, and Motor Systems. He is also Gnown for his research in cognitive 1989 he has been a member of the Senior Staff of MIT Lincoln Labomritor•,
and developmental psychology. Machine Intelligence Group. His work involves theoretical analysis and

real-time computation of time-varying imagery neural network.s foi
spatio-temporal grouping and apparent motion, neural systems for 3-D object
learning, and remoignition by mobile robots.
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12:30-1:30 P.M. Lunch at Wing Institute 10:30 A.M.-12:30 P.M. NIORNING SESSION

".Course 1-1:30-3:30 P.M. :I"TIERNOON SESION (PROFESSOR S CAENhR.
- ? .- ? L".:- (.,ROS SBERG. AND \IINGOLI.A1- ~~Schedule , ISOR

GROSSBERG- AND C.INGOLLA. ART 2 AND ART 3: Analysis of ART 2 archi.tecture for self-organized category learning

"ASSOCIATIVE LEARNING, and recognition of arbitrary sequences of
continued analog or binary input patterns. ART 3 archi.

tecture for category learning in distributed

4:00-6:00 P.M. Reistration NEOCOGNITRON: Recognition and corn- network hierarchies; chemical transmitter

:00-: P.M. Recppletion of images by a hierarchy of bottom- and neuromodulator dynamics in forming a
-Reception -up adaptive filters and top-down attentive medium-term memory (MTM) representa-

Sfeedback, tion distinct from short-term memory (STM)

PERCEPTRONS: Delta rule, gradient and long-term memory (LTM).

S:o0-10:00 A.M. MORNING SESSION descent, adaptive statistical predictor, non- VISION AND IMAGE PROCESSING:
(PROFESSOR GROSSBERG) linear separability, adaline, madaline. Central problems in biological vision; differ-

ences between seeing and recognizing. Intro-
HISTORICAL OVERVIEW: Introduction to INTRODUCTION TO BACK PROPAGA- duction to the Boundary Contour System
the binary, linear, and continuous-nonlinear TION: Supervised learning of multidimen- (BCS) for emergent segmentation of edges,
streams of neural network research: sional nonlinear maps by feedforward textures, and shading; illusory contours;
.M:Culloch-Pitts, Rosenblatt, Xbn Neumann;.AndeCuson , Rosnenblt, bnw Hodgkin-; networks. processing of artificial sensor data; neurobio-
Anderson, Iohonen, Widrow; Hodgkin- logical correlates. Introduction to the Feature
Huwdley Hartline-Ratiff, Grossberg. 3:30.4:00 P.M. Coffee Break Contour System (FCS) for perceiving surface

COOPERATION AND COMPETITION: 4:00-6:00 P.M. AFTERNOON SES.CION properties of brightness, color, and depth;

Analysis of asynchronous variable-load paral- tPROFESSORS GROSSBERG AND discounting variable illumination and filling-

lel processing by cooperative-competitive net- MINGOLLA) in. Introduction to the Motion BCS; analysis
works; solution of noise-saturation dilemma; of apparent motion; aperture problem,
classification of feedforward networks: auto- ADAPTIVE PATTERN RECOGNITION: motion capture, rapid reset of coherent
masic gain control, ratio processingd n et ber Adaptive filtering; derivation and analysis of segmentations, different geometries for static
latw, total activity normalization, noise sup- instar avalanches, competitive learning orientations and motion directions.

pression, pattern matching, edge detection, models, and 3-level unversal associative a230-1:30 P.M. Lunch at Wang Institute
brightness constancy and contrast; automatic maps; adaptive vector quantization; self-

compensation for variable illun-dnation or organizing feature maps; statistical properties 1:30-3:30 P.M. A-FTERNOON SESS"CN

other background energy distortions; classifi- of adaptive weights; learning stability and PROFESSORS GROS.iBERG AND

cation of feedback networks: influence of causes of instability; applications to cortical MINGOLLAt

nonlinear feedback signals, notably sigmoid feature maps and traveling salesman VISION AND IMAGE PROCESSING, continued
signals, on pattern transformation and mem- problem. 3:30-4:00 P.M. Coffee Break
or, storage, winner-take-all choices, partial 6:0-7:.15 P.M. Dinner at Wang Institute
memory compression, tunable filtering, 4:00-6:00 P.M. AFTERNOON SEE-zi, N
quantization and normalization of total activ- .:15-S:30 P.M. EVENING SESSION (PROFESSORS BULLOCK AND

ity. visual short-term memory, behavioral DISCUSSIONS .ITH LECTER.S AND GROSSBERG)

contrast, working memory for temporally INFORM\A\L PRESENIATiON. ADAPTIVE SENSORY-MOTOR
ordered events. CONTROL AND ROBOTICS: Recent pro-

CONTENT ADDRESSABLE MEMORY: . .gress in adaptive sensory-motor control and

Classification and anal)sis of neural network related robotics research. Learning to fove-

models for absolutely stable CAM. Models 8:00-10:00 A.M. MORNING SESSION ate, reach, grasp, and transport objects of

include: Cohen-Grossberg, additive, shunt- (PROFESSORS CARPEN'ER AND variable mass under visual guidance willbe

ing, Brain-State-in-a-Box, Boltzmann GROSSBERG) used as a target behavioral competence. Self-

chine, McCuloch-Pitts, masking field, INTRODUCION TO ADAPTIVE organization of reactive and planned eye

bidirectional associative memory. RONACE TO AbAlTE movements; universal adaptive gain control
.RESONANCE THEORY. Absolutely stable by cerebellar learning; synchronous variable-

10:00-10:.30 A.M. Coffee Break recognition learning; role of learned top- speed control of multi-joint arm and speech
down expectations; attentional priming; articulator trajectories; analysis of behavioral

10:30 A.M.-12:30 P.M. MORNING SESSION matching by 2/3 Rule; adaptive search; self- and neural data about human and monkey
(PROFESSOR GROSSBERG) controlled hypothesis testing; direct access to arm movements; inverse kinematics; auto-

globally optimal recognition code; control of matic compensation for unexpected pertur-

CONTENT ADDRESSABLE MEMORY, categorical coarseness by attentional vigi- bations; independent adaptive control pf

continued lance; comparison with relevant behavioral force and position by spinal circuits; idap-

ASSOCIATIVE LEARNING: Derivation of and brain data to emphasize biological basis tive control of position-dependent moment
associative equations for short-term and long- of ART computations. arms and motor plant nonlinearities by cere-

term memory. Overview and analysis of a5 0o- ART 1: Analysis of ART 1 architecture for bellarlearning; triphasic bursts during rapid

dative outstars, instars, computational maps, self-organized real-time hypothesis testing, movement and braking.

av'alinches, real-time learning of temporally learning, and recognition of arbitrary 6:00-7:15 P.M. Dinner at Wing Institute
ordered lists. Analysis of unbiased associative sequences of binary input patterns.
pattern learning by asynchronous parallel C:15-8:30 P.M.FVE1INING:. SrIOI N
sampling channels. Classification of associa- 10:00-10:30 A.M. Coffev, Bre ak " AND
tive lecrnine laws. IN IW.-IA ;r - -



S3:30-4:00 P.M. Coffee Break dimensional maps; automatic calibration of

. IG I4:0)0-6:00 P.M4. AirERNOON 5ESSION trajectory control parameters via rhythmic
S.0-10:00 A.M.MORNING SESSION (:DR-:0.M. ArRON IONrandom sampling of the workspace; self-

(PROFESSORS BULLOCK AND (DR. \'.NN AN) organization of head-centered and body-
GROSSB3ERG) LEARNING 3-D OBJECTS FROM centered representations of 3-D space;

TEMPORAL SEQUENCES: Seibert- spatial control of flexible motor trajectories.
DAPTIVE SENSORY-MOtiOR CONTROL Waxman modular neural systems approach;
":D ROBOTI'ICS, continued feature extraction: shunting nets and the 3:30-4:00 P.M. Coffee Break

TEECH PERCEPTION AND PRODUC- Diffusion-Enhancement Bilayer (DEB); 4:00-6:00 P.M. AFTERNOON SESSION
ON: Introduction to speech perception invariances: adaptive eye motions via ada- (PROFESSOR DAL..GMAN)

d production; circular reaction, imitation; lines; log-polar transform and grouping for

namics of working memory; multiple- scale and orientation invariance, overlap- SIGNAL PROCESSING IN NEURAL

ale chunking by masking fields; categori- ping receptive fields for deformation invari- NETWORKS: Continuous-time and

Sperception; phonemic restoration; ance; aspect categorization on the viewing discrete-time signal processing in linear,
ckward completion effects; resonant corn- sphere via ART 2; detecting and learning nonlinear, and adaptive neural networks.

1t ion and grouping of noisy variable-rate aspect transitions via the Aspect Net; evi- Implementations of differential operators,

• ch streams. dence accumulation across a viewing convolution, feedback, transforms, matched

sequence for recognition; implementation filters, and learning in networks; issues of

10:00-10:30 A.M. Coffee Break on a mobile robot with active vision, sampling, stability, orthogonality, noise,
and scaling; extension to image processing,

i0:.O A..M.-12:30 P.M. MORNING SESSION 6:00-7:15 P.M. Dinner at Wang Institute decision-under-uncertainty, and pattern
PIROFESSOR GROSSBERG) recognition, with application demonstrated

EINFORCEMENT LEARNING AND 7:15-8:30 P.M. EVENING SESSION in a practical system of automatic face
"IEDICTION: Reinforcement learning INFORMAL PRESENTATIONS recognition.

•.ifies how external events interact with 6:00-7:15 P.M. Dinner at Wang Institute
:emal organismic needs and costs to trig-

learning processes that focus attention t W& 'W'a-M 7:15-8:30 P.M. EVENING SESSION
-1 generate actions toward motivationally DISCUSSIONS WITH LECTURERS AND

.sired goals. A neural network model of 8:00-10:00 A.M..MORNING SES-5iON INFORMAL PRESENTATIONS
.forcement learning will be derived. (PROFESSOR JORDAN)

-alysis of drive representations, adaptive RECENT DEVELOPMENTS IN SUPER-
tics, conditioned reinforcers, role of moti- VISED LEARNING: Supervised learning
:ional feedback in focusing attention on in feedforward networks; the learning of 8:00-10:00 A.M. MORNING .-'IiON

edictive data; attentional blocking and inverse models; the problem of "teacher" in (PROFESSOR SCF%'%ARTZ)
.blocking; adaptively timed responding; supervised learning; distal supervised
"ective forgetting; opponent processing; learning and adaptive control; supervised ACTIVE VISION: Integration of robotic
ithesis of perception, recognition, rein- learning in modular networks; supervised actuators into real-time machine vision sys-

-cement, recall, and timing mechanisms learning in hierarchical networks. tems. Biological background for space-
•o a total neural architecture; neuro- variant (foveating) active vision; VLSI
.logical correlates. 10:00-10:30 A.M. Coffee Break sensor architectures; robotic actuator

-d of Course I 10:30 A.M.-12:30 P.M.\MORNING SESSION design; control systems and control
(0:3 A PMMONGSalgorithms; visual attention algorithms;
(DR. \\AIBEL) algorithms for pattern recognition with

SPEECH RECOGNITION AND UNDER- space-variant active vision systems; indus-

: Course 2 STANDING: Techniques in connectionist trial applications; connections to computa-

speech recognition and understanding. A tional neuroscience and brain dynamics.
Schedule brief introduction to the speech understand-

ing problem; review of techniques for 10:00-10:30 A.M. Coffee Break
,, .dynamic high-performance modeling of 10:30 A.M.-12:30 P.M. MORNING SESSION

phonemes; methods for connectionist word (DR. E.GGIN)
and continuous speech recognition; neural

11:30 A.M.-1:30 P.M. Registration network-based parsing and dialog modeling PRACTICAL IMPLEMENTATION OF

12:30 P.M.-1:30 P.M. Lunch at Wang Institute as applied to spoken language recognition NEURAL NETWORKS: Key issues relating
and translation; state-of-the-art speech sys- to the practical implementation of neural

1:30-3:30 P.M. AFTERNOON SESSION tems that employ connectionist techniques. networks; interdependence of neural net-
(PROFESSOR CARPENTER) work architecture and implementation tech-

12:30-1:30 P.M. Lunch at Wang Institute nology; characteristics of various software
ZZY ARTMAP: Incremental supervised and hardware implementations. An exam-
rning of recognition categories and multi- 1:30-3:30 P.M. AFTERNOON SESSION ple of a commercially deployed application
•nensiofal naps in response to arbitrary (PROFESSOR GROSSBERG) using a custom adaptive analog VLSI chip
tuences of analog or binary input vectors; VISION, SPACE, AND ACTION: Recent will be described in detail to further illus-
ural network realizations of fuzzy logic; results on selected topics in 3-D vision, trate the trade-offs required when solving a
'ximal code compression and minimal* figure-ground separation, synchronous fea- real-world problem.
2dictive error via mattch tricking; voting ture binding and motion perception; Wýctor
-tegies; benchmark comparisons with Associative 2:30-1:30 P.M. Lunch at Wn institute.
-k projpgation, machine learnin and ..n u. .



NEURAL NETWORKS FOR LEARNING, -
RECOGNITION, AND CONTROL
MAY 14-16, 1992

III

This international research conference on
topics of fundamental importance in science S:00 A.NI.-12:40 P.M. MORNING 8:00 AAI-12:40 P.M.SMORNING
and technology will bring together leading SESSION SESSION
experts from universities, government, and SE8:0ONindustry to present their results on learning, 8:00-8:50 A.M.recgntinandcotrlininvte lctre DR. MORTIMER MISHKIN, NATIONAL 8:00-8:50 A.M.recognition, and control, in inited lectures INSTITUTE OF MENTAL HEALTH PROFESSOR GEORGE CYBENKO,
cognitive science and neurobiology through "Two Cerebral Memory Systems" UNIVERSITY OF ILLINOIS"The Impact of Memory Technology oncomputational modeling to technological 8:50-9:40 A.M. Neurocomputing"
applications. PROFESSOR LARRY SQUIRE,
CALL FOR PAPERS: A featured poster ses- UNIVERSITY OF CALIFORNIA, 8:50-9:40 A.M.
sion on neural network research related to SAN DIEGO PROFESSOR EDUARDO SONTAG,
learning, recognition, and control will be "Brain Systems and the Structure RUTGERS UNIVERSITY
held on May 15, 1992. Attendees who wish to of Memory" "Some Mathematical Results on Feed-forward Nets: Recognition and Control"
present a poster should submit three copies 9:40-10:30 A.M.
of an abstract (one single-spaced page), post- PROFESSOR STEPHEN GROSSBERG, 9:40-10:30 A.M.marked by March 1, 1992, for refereeing. BOSTON UNIVERSITY PROFESSOR ROGER BROCKETT,Include a cover letter giving the name, "Neural Dynamics of Adaptively Timed HARVARD UNIVERSITY
address, and telephone number of the cor- Learning and Memory" "A General Framework for Learning via
responding author. Mail to: Poster Session, Steepest Descent"Neural Networks Conference, Wang Institute 10:30-11:00 A.M. Coffee Breakof Boston Universit, 72 Tyng Road, Tyngs- 10:30-11:00 A.M. Coffee Break
boro, MA 01879. Authors will be informed of 11:00-11:50 A.M.
abstract acceptance by March 31, 1992. A PROFESSOR THEODORE BERGER, 11:00-11:50 A.M.book of lecture and poster abstracts will be UNIVERSITY OF PI'ITSBURGH PROFESSOR BARRY PETERSON,giv'en to attendees at the conference. "A Biological Neural Model for Learning NORTHWESTERN UNIVERSITYand Memory" 

MEDICAL SCHOOL
"Approaches to Modeling a Plastic11:50 A.M.-12:40 P.M. Vestibulo-ocular Reflex"

PROFESSOR MARK BEAR,
BROWN UNIVERSITY 11:50 A.M.-12:40 P.M.

"Mechanisms for Experience-Dependent PROFESSOR DANIEL BULLOCK,CONFERENCE PROG-AM Modification of Visual Cortex" BOSTON UNIVERSITY
S12:40-2:00 P.M. Lunch at Wang Institute "Spino-Cerebellar Cooperation for

Skilled Movement Execution"
2:00-5:00 P.M. RernAFERNOON SESION 12:40-2:00 P.M. Lunch at Wang Institute
3:00-5:00 P.M. Reception 2:00-2:50 P.M. 2:00-5:30 P.M. AFTERNOON SESSION

PROFESSOR GAIL CARPENTER,

5:00-7:30 P.M. EVENING SESSION BOSTON UNIVERSITY 2:00-2:50 P.M.
5:00-5:50 P.M. "Supervised Learning by Adaptive DR. JAMES ALBUS,
PROFESSOR RICHARD SHIFFRIN, Resonance Networks" NATIONAL INSTITUTE OF
INDIANA UNIVERSITY STANDARDS AND TECHNOLOGY"The Relationship between Composition 2:50-3:40 P.M. "A System Architecture for Learning,

Distribution and Forgetting" DR. ALLEN WAXMANT Recognition, and Control"MIT LINCOLN LABORATORY

5:50-6:40 P.M. "Neural Networks for Mobile Robot 2:50-3:40 P.M.
PROFESSOR ROGER RATCLIFF, Visual Navigation and Conditioning" PROFESSOR KUMPATI NARENDRA,
NORTHWESTERN UNIVERSITY YALE UNIVERSITY"Evaluating Memory Models" 3:40-4:30 P.M. "Adaptive Control of Nonlinear Systems"DR. THOMAS CAUDELL, Using Neural Networks"

6:40-7:30 P.M. BOEING COMPANY
PROFESSOR DAVID RUMELHART, "The Industrial Application of Neural 3:40-4:30 P.M.
STANFORD UNIVERSITY Networks to Information Retrieval and DR. ROBERT PAP,

"Learning and Generalization in a Object Recognition at the Boeing ACCURATE AUTOMATION COMPANY
Connectionist Network" Company" "Neural Network Control of the NASASpace Shuttle Robot Arm"(Dinner not included with this evening's 4:30-7:30 P.M. I'OSTEIR SESSION AND

sessions) I:I:RI IINTS 4:30-5:30 P.M. DISCUSSION

7:30-8:45 P.M. Dinner at Wng In..titute End of Research Conference



II. TRAINING OF PhD STUDENTS

"Tihe following 12 students were partially supported by the URI grant. to do their PhD
Thesis in our department. Their articles, thesis titles, and present jobs are also noted, where
applic-able.

Daniel Cruthirds (still at the CNS Department). Articles 34-35.
Gregory Francis, "Cortical models of visual perception", PhD degree, May 1993; now
Assistant Professor of psychology'at Purdue University. Articles 36-38.
Natalya Markuzon (still at the CNS Department). Articles 14-16.

Niall McLoughlin (still at the CNS Department).
David Pedini'(still at the CNS Department).
John Reynolds, "Neural network architectures for learning, prediction, and probability
estimation", PhD degree, May 1993; now a postdoctoral fellow at NIMH in the laboratory
of Robert Desimone. Articles 14-22.
Karen Roberts (still at the CNS Department).

William Ross, "Neural network models of adaptive visual search and object recognition",
PhD degree, May 1994. Articles 55-56.
Hiarald Ruda (still at the CNS Department).

Diglio Simoni (transferred to Syracuse University).

Vikas Taliwal. (transferred to the Boston University Department of Mathematics).

Michael Tinnemeier, MA degree, May 1993.

In addition, the research support to the faculty enabled them to complete research articles
with 10 more PhD students (Bradski, Gaudiano, Cove, Greve, Lesher, Pribe, Rosen, Somers,
Williamson, Wyse). This research formed part of 8 completed PhD theses, and 2 more on-
the way.
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III. COLLOQUIUM SERIES

An active colloquium series was partially supported by the URI grant. It presented an
unusually broad interdisciplinary set of speakers, and was broadly advertised to and attended
by scientists from around the greater Boston area. The lists of speakers over the three years
of the grant are enclosed below.



S-pring i990 ColloqUium Series"

CENTER FOR ADPTIVE SYSTEMS
GRADUATE PROGRAM IN COGNITIVE AND NEURAL SYSTEMS "

BOSTON UNIVERSITY

February 6
ADAPTIVE RESONANCE THEORY: NEURAL NETWORK ARCHITECTURES
FOR ADAPTIVE PATTERN RECOGNITION
Professor Gail Carpenter. Cognitive & Neural Systems Program and
Department of .Mathematics. Boston Universitv

February 13
POSSIbLE MECHANISMS OF'EXPERIENCE-DEPENDENT SYNAPTIC
PLASTICITY IN VISUAL CORTEX
Professor Mark Bear, Center for Nýeural Science. Brown Universitv

February 27
CONTRkOLLING CONTACT IN ROBOTIC AND BIOLOGICAL SYSTEMS
Professor Neville Hogan. Department of Mechanical Engineering. M.LT.

MEMORY REPRESENTATION IN THE HIPPOCAMPUS
ProfeSsor Howard Eichenba-um. Department of Biological Sciences. Wellesley College

Match 'j7
MULTIPLE VISUAL ANALYSES: THE MANY DOORS OF PERCEPTION
Professor Patrick Cavanaugh. Department of Psychology, Harvard University

April 3
MINL MAPPING
Professor Michael Gazzaniga, Program in Cognitive Neuroscience. Dartmouth Medical School

April 10
CEREBRAL CORTICAL NEURONAL REPRESENTATIONS OF MOVEMENT,
DYNAMICS, AND KINEMATICS
Professor John Kalaska. Centre de Recherche en Sciences Neurologiques,
Universiti de .Montreal

April 17
SPEECH PERCEPTION: STRUCTURE OF PHONETIC CATEGORIES
Professor Joanne Miller, Department of Psychology. Northeastern University

All Talks on Tuesdays at 3:30 PM in Room 149
Refreshments at 3:00 PM in Room 241

Ill CummingtOn Street, Bostofin

-PLEASE POST--

m w



Fall i990 Colloquium Series

CENTER FOR ADAPTIVE• SYSTEMS
AND

GRADUATE PROGRAM IN COGNITIVE AND NEURAL SYSTEMS
BOSTON UNIVERSITY

Sept'e'mber IS
ADAPTIVE NEURAL DYNAMICS OF PLANNED AND REACTIVE ARMMOVEMENTS
Pr6fess6r Stephen Grossberg. W\ana Professor of Cognitive and Neural Systems. BostonUniversity: and Professor Daniel Bullock. Associate Professor of Cognitive and NeuralSystems and Psychology. Boston Universiti-

(This. two part. talk will run from 3:30-5 p.m.)September 25
BITQCHEMICAL MODEL FOR THE HEBB AND ANTI-HEBB PROCESSESUNDERLYING SYNAPTIC PLASTICITY AND MEMORYProfessor John Lismi an. Professor of Biology. Br andeis Univeriity%

October 2ROBUST SPEECH RECOGNITION USING HIDDEN MARKOV MODELSSDr. Doug Paul. Speech Systems -Technology Group. NlIT Lincoln Labý.

October 9
AMACRONIC SENSOR TECHNOLOGYDr. Wilfrid Veldkamp. Group Leader. Binary Optics Group, MIT Lincoln Labs.

October 16PRINCIPLES OF ANATOMIC ORGANIZATION OF THE PRIMATE CERE-BRAL CORTEX: IMPLICATIONS FOR CORTICAL EVOLUTIONProfessor Helen Barbas. Associate Professor of Health Sciences. Anatomy. and Neurobi-ology. Boston University.

October 23NEURONAL CORRELATES OF MOTION PERCEPTIONDr. Nikos'Logothetis. Department of Brain and Cognitive Sciences. MIT.

November 13
MODULAR ORGANIZATION OF NEURONS IN CEREBRAL CORTEXProfessor Alan Peters. Chairman and Waterhouse Professor of AnatQmy and Neurobiol-ogy. Boston University Medical School.

November 20
L'ART POUR L'ART: MODELING MUSICAL PERCEPTIONProfessor Robert Gjerdingen. Associate Piofessor of .Music Theory. State University ofNeew- York at Stony Brook.

December 4
THE PERCEPTION OF MOTIONProdfessor James Todd. Professor of Psychology and Center for Complex Systems. Bran-deis-Uniyersity.

All Talks on Tuesdays at 3:30 P1M in Room 149
Refreshments at 3:00 PM in Room 241

111 Cummington Street. Boston

"PLEASE POST-



Spring 1991 Collqui um eries

SCENTER FOR ADAPIVE SYSTEMS
AND-

GRADUATE PROGRAM IN COGNITIVE AND NEURAL SYSTEMS..
BOSTON UNIVE-RSITy

-januarv 22
KNOWLEDGE REPRESENTATION AND COMPUTING ON THE BASIS OF
S SIMILARITY AND ASSOCIATIVITYPfess0r •Yoh-Han Pao, Departments1of Eectrkal Engineering and Computer Science,

C s6 Western Reserve University

Januarv 29
EFFORTFUL TOUCH
*Pidofissor Michael Turvey. Professor of Psychology. University of Connecticut
Febr~iary 5

HtEBBIAN COMPUTATIONS IN HIPPOCAMPAL NEURONS
Professor Thomas H. -Brown, Dep•rtment-bf Psycholo0y' Yale University

Februarv 12.
NEURAL NETWORK CONTROLLER FOR ADAPTIVE SENSORY-MOTOR
ýCQORDINATION: DESIGNING AN 'INFANT' TO BEHAVE
'bDr. Michael Kuperstein, Presidentý Neui-ogen Cbrporation

"Febrfuahrv 19'
EYE MOVEMENTS IN THE NATURAL WORLD
Prtfessor Eileen KoWler, Psychology Department. Rutgers University

March 12
HERMiTE POLYNOMIALS AS BASIS FUNCTIONS FOR VISION
Professor Adaimi ReeVes. Psychology Department. Northeastern University

March 19
NEURAL DYNAMICS OF VISUAL MOTION SEGMENTATION
Plr6fessor Ennio Mingolla, Cognitive and Neural Systems Graduate Program .and
Psychology Department, Boston University

April 2
ROLE OF PROPRIOCEPTIVE INFORMATION IN THE PLANNING AND
CONTROL OF MULTI-JOINT MOVEMENT
Professor Claude Ghez, Center for Neurobiology and Behavior, Columbia University

April 9
DYNAMIC LEGGED ROBOTS
Professor Mark Raibert, Artifidal Intelligence Laboratory. MIT

April!16
ORIENTATION SELECTIVITY PREFERENCE AND CONTINUITY IN
MONKEY S.-IATE CORTEX
Professor Gary biasdel, Department of Neurobiology. Harvard University

All Talks on Tuesdays at 3:30 PM in Room 149
Refreshments at 3:00 PM in-Room 241

111 Cummington Street. Boston

eo. PLEASE POST ,.



. REVIýSED: ANNOUNCEMEgNT *

SPriig.,1991 Colloq*uium Series.

CENTER FOR A-DAIV SYSTEMS
'AD

GRADUATE PkQGRAM4 IN COGNITTWE A-ND) NEURAL SYSTEM
BOSONUNIVERSITY 

-

*F#bruarfvi9 (NKewly scheduled)
NEURAONAL DYNAMICS -IN.PRIMATE V ISIO
,Di. Timothy Gawniej-Laboratypf-N-europtvchology,x}1ationalI nstituteo4 Men~tl He~lth,

HEMIEPOLYNOM-IALS. ASg BASISý FUNCTIN$-FOR VISION
*Professor Adam.-Reeves. Psych-ologi: Department, Northeasternit.niversjtv

, Nlarch 19 (F6rmerlv schejuled'for February 19)
EYE -MO'VEMENTS1iN- TH4E NATUJRAL WORLD
-Procfessor Eileen Kowl1er.:Psvctbology %DepArtmfents Ruitgers.L7iAiversitv

- arch 26,(Formerly scheduled for M-\arch 19)-
NEURA_4LDYNA.MICS OF VISUAL MOTIONN SEGM1ENTATION-

-Profes~sor Ennio Mi9o9a CniieadNeural Systems Giaduate P-rogram and
PsV'cbology Department, Boston-UniVersity

April 2
'ROLE OF PROPRIOCEPTIVE INFORMATION IN THE PLANNING- AND.,;
CONTROL OF MULTI-JOINT MOVEMENT 

-

Profe~ssor Clauide Ghez. tenter for Neurobiology and Behaviori,-Columbia University

Aprilý0--
DYNAMIC LEGGED, ROBOTS
Professor Mark Raibert, Artificial Intelligence Laboratory,,MI

April 16
ORIENTATION SELECTIVITY PREFERENCE AND . CNTINUITY IN
MONKEY- STRIATE CORTEX

Poesor Gary B'lasdel, Department oflNuoioo\ Harvard Universit

-All Talks on Tuesdays at -3:30 PM In Room. 149
Refreshments at 3:00 PMin Roomh 24

111 Cummington Street, BRoston

..PLEASE-POST..
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Spring 1992 Colloquium• Series * .

CENTER FOR ADAPTIVE SYSTEMS "
"AND

DEPARTMENT OF COGNITIVE AND NEURAL SYSTEMS
BOSTON UNIVERSITY

JahiArv 2$
CONSTRUCTING CAMS: THE SYNTHESIS OF ARBITRARY STABLE

'DYNA.MICS 0
Professor .Michael Cohen. Department of Cognitive and Neural Systems and Computer
'Science Departihent. B6ston University

February 4
EPIGi9NETICS OF NEURAL NETWORKS AND IMPLICATIONS FOR
LANGUAGE
Professor Elie Bienenstock. Division of Applied Mathematics. Brown University

Februarv 11
TOWARDS A UNIFIED MODEL OF SPATIO-TEMPORAL VISUAL PRO,
CESSING: SIMULATION OF RESULTS FROM RETINAL PHYSIOLOGY---
Professbr Paolo Ga'Udiano. Department of Cognitive and Neural Systems. Boston,
UniV'ersitv-,
Februarv 23
IS TIHfERE ATTENTIONAL SELECTION OF ITEMS BY FEATURE AS
W,1'--ELL AS BY LOCATION?
Pro'essor George Sperling. Psychology Department and Center for Neural Sciences. New
York University

.Mlarch .5 fa Thursday!) -

CONNECTIONISM AND THE CORE ISSUES IN LANGUAGE DEVELOP-
MENT
Professor Brian MacWhinney. Psychology Department. Carnegie-Mellon University

NMarch 17
COARSE CODING AND THE LEXICON
Professor Catherine Harris. Psychologv Department. Boston University

March 31
POSTURAL FORCE FIELDS IN THE HUMAN ARM AND THEIR ROLE
IN INITLATION OF MOVEMENT
Reza Shadmehr, NMcDonnell-Pew Fellow. Brain and Cognitive Sciences Department.
Massachusetts Institute of Technology
April 14
HANDWRITING GENERATION AND HUMAN MOVEMENT MODELING
Professor Rijean Plamondon. Department of Electrical Engineering and Computer
Science. University of Montreal
April 21
HOW CAN PHYSIOLOGISTS TEST NEURAL NETWORK MODELS? IN-
SIGHTS FROM STUDIES OF QUADRATURE PHASE AND ANTIPHASE
PAIR FORMATION LN THE STRIATE CORTEX
Professor Dan Pollen. Department of Neurology. University of .Massachusetts Medical
School and Zheng Liu. Department of Applied Sciences. Harvard University.

All Talks (but March 5) ate on Tuesdays at 3:30 PM in Room 149
Refreshments at 3:00 PM in Room 241

1-11 Cummington Street. Boston

.. •PLEASE POST a o



Fal' 10 92 Colloquiumi Series
CENTER FOR ADAPTIVE SYSTEMS

AND
DEPARTMENT OF COGNITIVE AND. NEURAL SYSTkEMS.

BOSTON UNIVERSITY'

Sept ember:22
EXP iRESSIV -E TIMING;IN. MUSIC-1 PERIFORMANCE:--ý,

A ýNEURAL NETWORK( MODE L OF,-ADAPTIVELY. TIMED,%:
REIN-ORCEET EANNG AND. HIPPOCA uYINAM1LzCS ".'.f.

'Profe~sbirSteoh en G o b~rg* Depýrn~n of n~ti~ aiids Nir t emýs, x>;,.~
Boston Uniitve. . . . ,.. .*.., /. .. g

Octoberý 6'..: ... ..-

,.IS.THERE;MOTORP PROGRAM GENERALIZATION: EXAMINING TE~
.QUESTION ,AND. ITS 'ýANS WER'- . *

-ProfessorChiar'e's",,Wri'ght, Di~rtznet of Psychiology"", ''l"'mi:Unies~

ocfolkrý13 . j .

-IMPICITMEMORY. IN -AMNESIA-.:' ~ .

:Lard CdrinakWzor Diir RsrcCenter, BsoVA Hosp ta'-

*VISUALI.PATTERN. ,RECOGNITION 'AND'TH TEMPOAL LOBE
Piof~i4essChairlei"'rois, ,Depaztncnt Pf Pscholog3 Princetonr Uniýe1ty .

VI' .. . . .' *,* .- v -. - -ernberL 'dA, CELJAJJADA!. V <*

MAGNE9TIC RESONANCE IMAGING OF THE'.HUMAN BRAIN:ý,~
FROM: STRUCTURE ,TO FUNCTION ....-

P rofessior Doi -eh'd urfs~~fNioo Har~ard Medicatl Sc6,,
and Cnter or M~pboretric~nalyis, assachuset General 1os"ta

TOPO6L-6b'Y AND_ TOPOGRAPHY IN PRIMATE VISUjAL CtORTEX. TOWARDS'
A NIFIED 'COMPUTATIONAL, MODEL'OF FUNCTIONAL ̀ ARCHITECTURE

Profesbr'Eric $.c wartz Departmnent; of Cognitive and 1\eural System' Bostnt~est

THEORETICAL; RESULTSi I`N- MEMO(RJY-BASED LEARNING.
Professor' Geo'r'g& C 3'be'nko;, Thay'er School -of En gine~ring"' Dart mouth'Cofllge

GEOMETRY AND BIOPHY'SICS:'SOME CASE STUDIES"."
Prf~o' cyKIel DepiHrtieni of Mfathematis, Bo on' iivrsitv

Deccnri~bcrS 6 . .,

IMPLICIT MEMORY IN THE AUDITORY DOMAIN: COG'NITIVE
AND NEUIROPSYCHOLOGICAT. ANALYSES
Professor Daniel Schacter, Depart menit of Psychology, Hiarvard University

e41Talks on Tuesdavs at 3:30 PM\ in Room 140
~j-'VJRefrcbhments ut'3:00 PM\ in Room 241

nesI Ill Cumrnington Street. Boston
PLEASE PC4-.
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CENE FOR ADAPTIV.E SYSTEMS'
AND.

DPtARTMENxT OF _COGNITIVE AND -NEURAL- SYSTEgMS 7
BOSTN UNVRSITY

THE NEUROBEHAVIORAL BASES FOR THE REWARDING EFFECTS- OF
ABUMSED, DRUGS-
Profssor Conan Korn etsky, D~epartment.of Psychiatry, Boston University Medical School,

POSTURE BASED -PL'ANNING FOR -MOVEMENT
Pr~fsso Daid osenaum Deartent of Psychology, University- of Massachusetts At,

SENSRY MOTOR ADAPTATION TO UNUSUA1L FORCE
ENVIRONMENTS.
Pr~ofessor James Lackner, Ashton Graybiel Spatial Orientation Lab,. Brandeisý University

Mir-dh23
THE BASAL GANGLIA, AND MOTOR CONTROL
Professor Ann -Graybiel,- Department of'B'rain and Cognitive Sciences,, MIT

March 30
COQMPUTATION OF MOTION .SIGNALS- IN THE VISUAL CORTEX

(OF CAT) A~ND ITS RELATION TO MOTONERG
Professor Robert Emnerson, Center for Visual Science, -University of Rochester

'April fla
DYNAMIC -PROPERTIES OF -ADULT- VISUAL-.CORT-EX
iirofeýssor Charles Gilbert, DepArtimentWIfN~eurobiology, Rock-efeller University

April 20
MOTION PERCEPT -ION: HOW THE BRAIN DEALS WITH 1000 POINTS
OF LIGHOT
_Prfessor Robert Sek-uler, Dep'artmenit of ;Biomedical Engineering, Boston

Uniersty ndDeprtmntof Psyhology, Braideis University

All Talks are on Tuesdays at 3:30'.PM in Roomn 149
-_Refreshtifi~ets at-.3:00 PM hin 'oam 241

11r' Cummington Street, Boston,

*,.PLEASE POST?



IV. BOSTON UNIVERSITY PUBLICATIONS
-PARTIALLY SUPPORTED BY

THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Contract AFOSR 90-0175
January 1,. 1990-April 15, -1993

BOOKS

1. Carpenter, G.A. and Grossberg, S. (Eds.) (1991). Pattern recognition by self-
organizing neural networks. Cambridge, MA: MIT Press. (*%#+)

2. Carpenter, G.A. and Grossberg, S. (Eds.) (1992). Neural networks for vision and
inmage processing. Cambridge,, MA: MIT Press. (*%#+(4)

3. Commons, M., Grossberg, S., and Staddon, J.E.R.,(Eds.). (1991). Neural network
models of conditioning- and action, Hillsdale, NJ: Erlbaum- Associates.

4. GroSsberg, S. (1992). Neural networks and natural intelligence. Cambridge, MA:
MIT Press (paperback edition).

ARTICLES
1. Bradski, G., Carpenter, G.A., and Grossberg, S. (1991). Working memOry networks~for

learning multiple groupings of temporally ordered events: Applications to 3-D visualob-
ject recognition. In Proceedings of the international joint conference on neural.
networks, Seattle, I, 723-728. Piscataway, NJ: IEEE Service Center. (%#+)

2. Bradski, G., Carpenter, G.A., and Grossberg, S. (1992). Working memory networks for
- learning temporal order with application to three-dimensional visual object recognition.

Neural Computation, 4, 270-286. (%#+@)
3. Bradski, G., Carpenter, G.A., and Grossberg, S. (1992). Working memories for storage

and recall of arbitrary temporal sequences. In Proceedings of the international joint
conference on neural networks, Baltimore, 11, 57-62. Piscataway, NJ: IEEE Service
Center. (%#+@)

4. Bradski, G., Carpenter, G.A., and Grossberg, S. (1992). STORE working memory
networks for storage and recall of arbitrary temporal sequences. Technical Report
CAS/CNS-TR-92-028, Boston University. Submitted for publication. (%#+@)

.5. Bullock, D. and Grossberg, S. (1991). Adaptive neural, networks for control of movement
trajectories invariant under speed and force rescaling. Human Movement Science, 10,
,3-53. (+)

6. Bullock, D. and Grossberg, S. (1991). Reply to Commentators for the Target Article
"Adaptive neural networks for control of movement trajectories invariant under speed
and force rescaling." Human Movement Science, 10, 133-157. (+)

7. Bullock, D. and Grossberg, S. (1992). Emergence of tri-phasic muscle activation from the
nonlinear interactions of central and spinal neural network circuits. Human Movement
Science, 11, 157-167. (# +)

8. Carpenter, G.A. and Grossberg, S. (1991). Distributed hypothesis testing; attention
shifts, and transmitter dynamics during the self-organization of brain recognition codes.
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In H.G. Schuster and \V. Singer (Eds.), Nonlinear dynamics and neuronal ,iet-
works. New York: Springer-Verlag, pp. 305-:334. (*%#+)

9. Carpenter, G.A. awid Grossberg, S. (1992). Adaptive resonance theory. Encyclopedia
of artificial intelligence, Second edition. New York: Wiley and Sons, pp. 13-21.

10. Carpenter, G.A. and Grossberg, S. (1992). Self-organizing cortical networks for dis-
tributed hypothesis testing and recognition learning. In J.G. Taylor and C.L.T. Mannion
(Eds.), Theory and applications of neural networks. London: Springer-Verlag,
pp. 3-27. (*%#+)

11. Carpenter, G.A. and Grossberg, S. (1993). Normal and amnesic learning, recognition,
and memory by a neural model of cortico-hippocampal interactions. Trends in Neuro-
sciences, 16, 1:31-1:37. (%#+,#)

12. Carpenter, G.A., Grossberg, S., and lizuka, K. (1992). Comparative performance mea-
sures of Fuzzy ARTMAP, learned vector quantization, and back propagation for hand-
written character recognition. In Proceedings of the international joint conference
on neural networks, Baltimore, I, 794-799. Piscataway, NJ: IEEE Service Center.

13. Carpenter, G.A,, Grossberg, S., and Lesher, G.W. (1992). A what-and-where neural
network for invariant image preprocessing. In Proceedings of the international
joint conference on neural networks, Baltimore, III, 303-:308. Piscataway, NJ:
IEEE Service Center. (%#+(6)

14. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. (1992).
Fuzzy ARTMAP: An adaptive resonance architecture for incremental learning of analog
maps. In Proceedings of the international joint conference on neural networks,
Baltimore, III, 309-314. Piscataway, NJ: IEEE Service Center. (%#+@)

15. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. (1992).
Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of
amnalog multidimensional maps. IEEE Transactions on Neural Networks, 3, 698-713.

16. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. (1992).
Supervised learning by adaptive resonance neural networks. In M. Marinaro and G.
Scarpetta (Eds.), Structure: From physics to general systems. Singapore: World
Scientific Publishing Company, 2, 36-63. (%#+(4)

17. Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991). ARTMAP: Supervised real-
time learning and classification of nonstationary data by a self-organizing neural network.
Neural Networks, 4, 565-588. (*%#+)

18. Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991). A self-organizing ARTMAP
neural architecture for supervised learning and pattern recognition. In R. Mammone and
Y, Zeevi (Eds.), Neural networks: Theory and applications. New York: Academic
Press. (*%#+)

19. Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991). ARTMAP: A self-organizing
neural network architecture for fast supervised learning and pattern recognition. In T.
Kohonen, K. Makisara, 0. Simula, and J. Kanga.s (Eds.), Artificial neural networks,
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Volume 1. Amsterdam: Elsevier, pp. :31;-36. (*%#+)

20. Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991). ARTMAP: A self-organizing
neural, network architecture for fast supervised learning and pattern recognition. In
Proceedings of the international joint conference on neural networks, Seattle,"
I, 863-868. Piscataway, NJ: IEEE Service Center. (*%#+)

21. Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1992). A neural network architec-
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V. BOSTON UNIVERSITY PROJECT SUMMARIES

1. Supervised and Unsupervised Learning, Recognition, and Prediction of Non-
stationary Analog Data Bases [Articles 8-12,14-26]

As we move freely through the world, we can attend to both familiar and novel objectsi
"ad can rapidly learn to recognize, test hypotheses about, and learn to name novel objects
without unselectively disrupting our memories of familiar objects. This article describes a
new self-organizing neural network architecture-called a Fuzzy ARTMAP-that is capable
of fast, yet stable, on-line recognition learning, hypothesis testing, and adaptive naming in
response to an arbitrary stream of analog or binary input patterns.

The Fuzzy ARTMAP architecture combines a set of computational properties (Table 1)
whose unavailability in alternative approaches have limited their ability to function au-
tonomously in a rapidly changing world. 'Indeed, it represents a computational synthesis of
ideas from neural networks, production systems, and fuzzy logic. These properties enable
Fuzzy ARTMAP to autonomously learn, recognize, and make predictions about:

(A), Rare Events
A successful autonomous agent must be able to learn about rare events that have impor-

tant consequences, even if these rare events are similar to a surrounding cloud of frequent
events that have different consequences (Figure 1). Fast learning is needed to pick up a rare
event on the fly. For example, a rare medical case may be the harbinger of a new epidemic.
A faint astronomical signal may signify important consequences for theories of the Universe.
A slightly different chemical assay may predict the biological activity of a new drug. Many
traditional learning schemes use a form of slow learning that tends to average over similar
event occurrences. In contrast, Fuzzy ARTMAP can rapidly learn a rare event that predicts
different consequences than a cloud of similar events in which it is embedded.

(B) Large Nonstationary Data Bases
Rare events typically occur in a nonstationary environment whose event statistics may

change rapidly and unexpectedly through time. Individual events may also occur with vari-
able probabilities and durations, and arbitrarily large numbers of events may need to be
processed. Each of these factors tends to destabilize the learning process within traditional
algorithms. New learning in such algorithms tends to unselectively wash away the memory
traces of old, but still useful, knowledge. Using such an algorithm, for example, learning a
new face could erase the -memory of a parent's face. More generally, learning a new type of
expertise could erase the memory of previous expert knowledge. Fuzzy ARTMAP contains
a self-stabilizing memory that permits accumulating knowledge to be stored reliably in re-
sponse to arbitrarily many events in a nonstationary environment under incremental learning
conditions, until the algorithm's full memory capacity, which can be chosen arbitrarily large,
is exhausted.

(C) Morphologically Variable Types of Events
In many environments, some information is coarsely defined whereas other information

is precisely characterized. Otherwise expressed, the morphological variability of the data
may change through time. For example, it may just be necessaryto recognize that an object
is an animal, or you may need to confirm that it is your own pet. It may just be necessary to
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AUTONOMOUS LEARNING AND CONTROL
IN A NONSTATIONARY WORLD

Need one system that reconciles conflicting properties -
a system that can autonomously learn about:

(A) RARE EVENTS
- need FAST learning

(B) LARGE NONSTATIONARY DATABASES
- need STABLE learning

(C) MORPHOLOGICALLY VARIABLE EVENTS
need, MULTIPLE SCALES of generalization (fine/coarse)

(D) ONE-TO-MANY AND MANY-TO-ONE RELATIONSHIPS
- need categorization, naming, and expert knowledge

To realize these properties, ARTMAP systems:

(E) PAY ATTENTION
- ignore masses of irrelevant data

(F) TEST HYPOTHESES
- discover predictive constraints hidden in data streams

(G) CHOOSE BEST ANSWERS
- quickly select globally optimal solution at any stage of learning

(H) CALIBRATE CONFIDENCE
.- measure on-line how well a hypothesis matches the data

(I) DISCOVER RULES
- identify transparent IF-THEN relations at each learning stage

(J) SCALE
- preserve all desirable properties in arbitrarily large problems

Table 1.
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recognize that an object is an airplane, or that it is a particular type of airplane that is flown
for a particular purpose by a particular country. Ui~der autonomous learning conditions,
no teacher is typically available to instruct a system about how coarse its generalization,
or compression, of particular types of data should be. Multiple scales of generalization,
from fine to coarse, need to be available on an as-needed basis. Fuzzy ARTMAP is able to
automatically adjust its scale of generalization to match the morphological variability of the
data. It embodies a Minimax Learning Rule that conjointly miniimizes predictive error and
maximizes generalization using only information that is locally available under incremental
learning conditions in a nonstationary environment.

(D) Many-to-One and One-to-Many Relationships
Many-to-one learning takes two forms: categorization and naming (Figure 2). For exam-

ple, during categorization of printed letter fonts, many similar exemplars of the same printed
letter may establish a single recognition category, or compressed representation. Different
printed letter fonts or written exemplars of the letter may establish additional categories.
Each of these categories carries out a many-to-one map of exemplar into category. During
naming, all of the categories that represent the same letter may be associatively mapped
into the letter name, or prediction. This is a second, distinct, type of many-to-one map.
There need be no relationship whatsoever between the visual features that define a printed
letter A and a written letter A, yet both categories may need to be assigned the same name
due to cultural, not visual, reasons.

One-to-many learning is used to build up expert knowledge about an object or event
(Figure 3). A single visual image of a particular animal may, for example, lead to learning
that predicts: animal, dog, beagle, and my dog "Rover". A computerized record of a pa-
tient's medical check-up may lead to a series of predictions about the patient's health. A
chemical assay of a sample of coal or petroleum may lead to many predictions about its uses
as an energy source or structural material. In many learning algorithms, the attempt to
learn more than one prediction about an event leads to unselective forgetting of previously
learned predictions, for the same reason that these algorithms become unstable in response
to nonstationary data.

Error-based learning systems, including the popular back propagation algorithm, find it
difficult, if not impossible, to achieve any of the computational goals (A)-(D). Back propa-
gation compares its actual prediction with a correct prediction and uses the error to change
adaptive weights in a direction that is error-reducing. Fast learning would zero the error on
each learning trial, and therefore cause massive forgetting. Statistical changes in the envi-
ronment drag the adaptive weights away from their estimates of the previous environment.
Longer event durations zero the error more, and thereby destabilize previous memories for
the same reason that fast learning does. The selection of a fixed number of hidden units tends
to fix a uniform level of generalization. Error-based learning also tends to force forgetting
of previous predictions under one-to-many learning conditions, because the present correct
prediction treats all previously learned predictions as errors. Ratcliff (1990) has noted,
moreover, that back propagation fails to simulate human cognitive data about learning and
forgetting.

Fuzzy ARTMAP exhibits the l)roperties (A)-(D) because it implements a qualitatively
different set of heuristics than error-based learning systems. These heuristics are embodied
in the following types of processes:
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MANY-TO-ONE MAP
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Figure 2. Many-to-one learning combines categorization of many exemplars into one cate-

gory, and labelling of many categories with the same name.
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ONE-TO-MANY MAP

VISUAL AUDITORY
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Figure 3. One-to-many learning enables one input vector to be associated with many output
vectors. If the system predicts an output that is disconfirmed at a given stage of learning,
the predictive error drives a memory search for a new category to associate with the new
prediction, without degrading its previous knowledge about the input vector.
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(E) Pay Attention

A Fuzzy ARTMAP system can learn top-down. expectations (also called primes, or
queries) that can bias the system to ignore masses of irrelevant data. A large mismatch
between a bottom-up input vector and a top-down expectation can drive an adaptive mem-
ory search that carries out

(F) Hypothesis Testing and Match-Based Learning
The system actively searches for recognition categories, or hypotheses, whose top-down

expectations provide an acceptable match to bottom-up data. The top-down expectation
focuses attention upon, and binds, that cluster of input features that it deems to be relevant.
If no available category, or hypothesis, provides a good enough match, then selection and
learning of a new category and top-down expectation is automatically initiated. When the
search discovers a category that provides an acceptable match, the system locks into an
attentive resonance whereby the input exemplar refines the adaptive weights of the category
bated on any new information that it contains.

Thus the Fuzzy ARTMAP system carries out match-based learning, rather than error-
based learning. A category modifies its previous learning only if its top-down expectation
matches the input vector well enough to risk changing its defining characteristics. Otherwise,
hypothesis testing selects a new category on which to base learning of a novel event.

(G) Choose Globally Best Answer
In many learning algorithms, as learning proceeds, local minima or less than optimal

solutions are selected to represent the data. In Fuzzy ARTMAP, at any stage of learning, an
input exemplar first selects the category whose top-down expectation provides the globally
best match. A top-down expectation hereby acts as a prototype for the class of all the input
exemplars that its category represents. After learning self-stabilizes, every input directly
s•'Pcts the globally best category without any search. Before learning self-stabilizes, familiar
events gain direct access to the globally best category without any search, even if they
ar, interspersed with unfamiliar events that drive hypothesis testing for better matching
ca' ,".-i:es.

• Calibrate Confidence
confidence measure, called vigilance, calibrates how well an exemplar matches the

prototype that it selects. Otherwise expressed, vigilance measures how well the chosen hy-
pothesis matches the data. If vigilance is low, even poor matches are accepted. Many
different exemplars can then be incorporated into one category, so compression and gener-
alization by that category are high. If vigilance is high, then even good matches may be
rejected, and hypothesis testing may be initiated to select a new category. In this case, few
exemplars activate the same category, so compression and generalization are low. A very
high vigilance can select a unique category for a rare event that predicts an outcome different
from that of any of the similar exemplars that surround it.

The Minimax Learning Rule is realized by adjusting the vigilance parameter in response
to a predictive error. Vigilance is increased just enough to initiate hypothesis testing to
discover a better category, or hypothesis, with which to match the data. In this way, a
minimum amount of generalization is sacrificed to correct the error. This process is called
match tracking because vigilance tracks the degree of match between exemplar and prototype
in response to a predictive error.
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(I) Rule Extraction

At any stage of learning, a user can translate the state of a Fuzzy ARTMAP system
into an algorithmic set of IF-THEN rules. From this perspective, Fuzzy ARTMAP can be
interpreted as a type of self-organizing expert system. These rules evolve as the system is
exposed to new inputs. This feature is particularly important in applications such as medical
diagnosis from a large database of patient records. Table 2 summarizes some medical and
other benchmark studies that compare the performance of Fuzzy ARTMAP with alternative
recognition and prediction models.

(J) Properties Scale

One of the most serious deficiencies of many Artificial Intelligence algorithms is that
their desirable properties tend to break down as small toy problems are generalized to large-
scale problems. In contrast, all of the desirable properties of Fuzzy ARTMAP scale to
arbitrarily large problems. It must be emphasized, however, that Fuzzy ARTIMAP solves a
particular type of problem. It is not intended to solve all problems of learning or intelligence.
The categorization and prediction problems that ARTMAP does handle well are, however,
core problems in many intelligent systems, and have been technology bottlenecks for many
alternative approaches.

In summary, as Tables 1 and 2 illustrate, the Fuzzy ARTMAP family of architectures
embody many insights from cognitive psychology into a neural network algorithm which is
proving to be consistently superior to symbolic machine learning, genetic algorithm, and al-
ternative neural network architectures. This superiority reflects itself in fundamental system
properties, such as being able to learn about large nonstationary databases with which other
models cannot cope, as well as in greater accuracy and much faster learning on standard
benchmark problems.

These supervised ART systems are also being applied to explain clinial data about medial
temporal amnesia due to lesions of the hippocampal formation, and data about normal
recognition learning by inferotemporal cortex. New predictions are also being developed
about how the hippocampal formation may regulate the specificity of the recogrition codes
that are learned by inferotemporal cortex. Several neurobiology labs have accord .gly begun
to use the theory to analyse their neurobiological data about inferotemporal cortex; e.g.,
Desimone's lab at NIMH and Gochin's lab at Princeton.

2. 3-D Vision and Figure-Ground Separation by Visual Cortex [Articles 47-49]
A theory of 3-D visual perception and figure-ground separation by visual cortex has been

described. A solution of the classical figure-ground problem for biological vision is developed
within the theory. A unified explanation is given of how a 2-D image may generate a 3-D
percept; how figures pop-out from cluttered backgrounds; how spatially sparse disparity cues
can generate continuous surface representations at different perceived depths; how binocular
fusion of objects at different depths can deform perceptual space by different amounts, as
during allelotropia; how representations of occluded regions can be completed and recognized
without usually being seen; how occluded regions can sometimes be seen during percepts of
transparency; how high spatial frequency parts of an image may appear closer than low
spatial frequency parts; how sharp targets are detected better against a figure and blurred
targets are detector better against a background; how low spatial frequency parts of an
image may be fused while high spatial frequency parts are rivalrous; how sparse blue cones
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ARTMAP BENCHMARK STUDIES

1. Medical database - mortality following coronary bypass grafting (CABG) surgery

FUZZY ARTMAP significantly outperforms:

LOGISTIC REGRESSION

ADDITIVE MODEL

BAYESIAN ASSIGNMENT

CLUSTER ANALYSIS

CLASSIFICATION AND REGRESSION TREES

EXPERT PANEL-DERIVED SICKNESS SCORES

PRINCIPAL COMPONENT ANALYSIS

2. Mushroom database

DECISION TREES ('90-95 % correct)

ARTMAP ( 100% correct)
Training set an order of magnitude smaller

3. Letter recognition database

GENETIC ALGORITHM (82% correct)

FUZZY ARTMAP( 96% correct)

4. Circle-in-the-Square task

BACK PROPAGATION (90% correct)

FUZZY ARTMAP" ( 99.5% correct)

5. Two-Spiral task

BACK PROPAGATION (10,000 - 20,000 training epochs)

FUZZY ARTMAP ( 1-5 training epochs)

Table 2.
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can generate vivid blue surface percepts; how depth attraction may occur between nearby
targets and depth repulsion between further targets; how 3-D neon color spreading, visual
phantoms, and tissue contrast percepts are generated;* how conjunctions of color-and-depth
may rapidly pop-out during visual search. These explanations are derived from an ecological
analysis of how monocularly viewed parts of an image inherit the appropriate depth from
contiguous binocularly viewed parts, as during DaVinci stereo, the equidistance tendency,
and the viewing of texture stereograms.

Such data analyses have led to a neural theory of how the two parvocellular processing
streams that join LGN to prestriate area V4. interact to generate a multiplexed represen-
tation of Form-And-Color-And DEpth, or FACADE, within area V4. The two parvocellular
streams are modelled by a Boundary Contour System (BCS) and a Feature Contour System
(FCS). The BCS generates emergent boundary segmentations that combine edge, texture,
shading, and stereo information. The FCS discounts the illuminant and fills-in surfa.ce prop-
erties of brightness, color, and depth. The ensemble of all surface representations constitutes
the FACADE representation. The BCS and FCS interact reciprocally via adaptive filters
with an Object Recognition System, interpreted to occur in inferotemporal cortex, to bind
these segmentation and surface properties together. It is shown how interactions between
BCS and FCS, especially partially ordered interactions form larger scales and disparities to
smaller scales and disparities, inhibit spurious boundary and surface signals.

Key new ideas are that filled-in connected regions at a given disparity inhibit the bound-
aries and features of smaller disparity representations; near-zero disparity cell pools and
non-zero disparity cell pools interact to generate boundary segmentations; the cortical mag-
nification factor helps to convert different disparity computations at different foveal eccentric-
ities into a planar surface representation; multiple receptive field sizes cooperate to generate
positionally accurate segmentations, and to suppress low spatial frequency contributions at
high curvature contours; double-opponent networks react to boundary-gated filling-in events
by selecting binocularly consistent combinations of monocular featural data, and suppressing
inconsistent data; ocular dominance columns control the amount of allelotropia and the size-
disparity correlation that decide between binocular fusion and rivalry; self-similar networks of
simple cells, complex cells, hypercomplex cells, higher-order hypercomplex cells, and bipole
cells generate hyperacute boundary segmentations that organize surface representations into
ecologically useful 3-D percepts.

In summary, this work promises to represent a major breakthrough in our understanding
of the principles and mechanisms of the visual cortex whereby humans and other mammals
perceive a 3-D world. The potential biological importance of the theory is calibrated by
the size of the perceptual and neural databases for which it, but no other available theory,
provides a unified explanation. The potential applications in machine vision are also ex-
tensive, especially for the processing of noisy and ambiguous images wherein it is difficult
for other algorithms to define, or "pop out," object representations. This machine vision
potential gains credibility from the fact that earlier versions of the theory are already being
implemented in the processing of laser radar, synthetic aperture radar, infrared, magnetic
resonance, and high-altitude photographic images [e.g., articles 65-68].
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3. Cortical Dynamics of Feature Binding and Reset: Control of Visual Persis-
tence [Articles 36-38]

The ability to rapidly reset segmentations in order to avoid undue smearing is of cru-
cial importance to any real-time vision system. Mammalian systems have evolved ingenious
specializations to address this problem. Francis, Grossberg, and Mingolla hypothesize that
many properties of visual persistence are caused by positive feedback in the visual cortical
circuits that are responsible for the binding or segmentation of visual features into coherent
visual forms, and that the degree of persistence is limited by circuits that reset these segmen-
tations at stimulus offset. They propose a model of the cortical local circuitry responsible for
such feature binding and reset, and use the model to quantitatively simulate psychophysical
data showing increase of persistence with spatial separation of a masking stimulus; inverse
relation of persistence to flash luminance and duration; greater persistence of illusory con-
tours than real contours, with maximal persistence at an intermediate stimulus duration; and
dependence of persistence on pre-adapted stimulus orientation. The model is a refinement of
the BCS architecture, whereby the dynamics of relatively slowly varying transmitter gates
are embedded into the Cooperative-Competitive Loop (CC Loop) of the Boundary Contour
System (BCS). The transmitter gates form gated dipoles that instantiate the opponent in-
hibition across cells tuned to perpendicular orientations at the second competitive stage of
the BCS (see Figures 4 and 5). As a result, the model proposed by Francis, Grossberg,
and Mingolla is compatible with existing implementations of the BCS for image processing
aIplications, and provides a principled basis for extending BCS segmentation procedures to
time-varying imagery.

4. Modeling Cortical Dynamics of Coherent Motion Processing [Articles 51-54]

Grossberg and Mingolla have extended earlier work on motion perception by the CAS
group. In their article, a neural network model of global motion segmentation by visual
cortex is described. Called the Motion Boundary Contour System (BCS), the model clar-
ifies how ambiguous local movements on a complex moving shape are actively reorganized
into a coherent global motion signal. Unlike many previous researchers, they analyse how
a coherent motion signal is imparted to all regions of a moving figure, not only to regions
at which unambiguous motion signals exist. The model thereby suggests a solution to the
global aperture problem. The Motion BCS describes how preprocessing of motion signals
by a Motion Oriented Contrast Filter (MOC Filter) is joined to long-range cooperative
grouping mechanisms in a Motion Cooperative-Competitive Loop (MOCC Loop) to control
phenomena such as motion capture. The Motion BCS is computed in parallel with the Static
BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the Motion
BCS and the Static BCS, specialized to process movement directions and static orientations,
respectively, support a unified explanation of many data about static form perception and
motion form perception that have heretofore been unexplained or treated separately. Predic-
tions about microscopic computational differences of the parallel cortical streams VI -- MT
and V1 - V2 -- , MT are made, notably the magnocellular thick stripe and parvocellular
interstripe streams. It is shown how the Motion BCS can compute motion directions that
may be synthesized from multiple orientations with opposite directions-of-contrast. Interac-
tions of model simple cells, complex cells, hypercomplex cells, and bipole cells are described,
with special emphasis given to new functional roles in direction disambiguation for endstop-
ping at multiple processing stages and to the dynamic interplay of spatially short-range and
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long-range interactions.

The work on motion segmentation dovetails with the work on visual persistence (Sec-
tion 3) to clarify how both the static form and motion form systems in primate vision
can react to the same moving input to provide complementary and cooperative measures
of moving form. Thus, while for extreme parameter ranges (i.e., perfectly still images, or
"blindingly" fast motion) only one of the form systems may operate effectively, there exist
important intermediate cases in which both can produce valid segmentations whose results
can be compared. The more sophisticated segmentations of the Static BCS can be used to
enhance perception of motion in complex or cluttered scenes (e.g., movement of "illusory
contours") and the rapid assessment of direction-of-motion afforded by the Motion BCS car
be used to rapidly direct eye movements or attention to important regions of the scene for
more thorough processing.

5. Perceptual Experiments on Globally Coherent Motion [Article 74]

In collaboration with Jim Todd and Farley Norman, while they were at Brandeis Univer-
sity, Ennio Mingolla conducted psychophysical investigations on the perception of globally
coherent motion. Their study asked: How do human observers perceive a coherent pattern
of motion from a disparate set of local motion measures? Their research examined how
ambiguous motion signals along straight contours are spatially integrated to obtain a glob-
ally coherent perception of motion. Observers viewed displays containing a large number
of apertures, with each aperture containing one or more contours whose orientations and
velocities could be independently specified. The total pattern of the contour trajectories
across the individual apertures was manipulated to produce globally coherent motions, such
as rotations, expansions, or translations. For displays containing only straight contours ex-
tending to the circumferences of the apertures, observers' reports of global motion direction
were biased whenever the sampling of contour orientations was asymmetric relative to the
direction of motion. Performance was improved by the presence of identifiable features, such
as line ends or crossings, whose trajectories could be tracked over time. The reports of the
observers were consistent with a pooling process involving a vector average of measures of
the component of velocity normal to contour orientation, rather than with the predictions
of the intersection-of-constraints analysis in velocity space. This psychophysical work was
directly related to the vision modeling work at the CAS, insofar as it provided empirical
evidence for a vector averaging process in motion perception along the lines suggested by
the work of Grossberg and Mingolla described in Section 4.

6. Multiscale Neural Network Processing of Synthetic Aperture Radar Images
[Article 57]

A multiscale image processing algorithm (Figures 6 and 7) based on the Boundary Con-
tour System (BCS) and Feature Contour System (FCS) neural network models of preatten-
tive vision, developed at Boston University's Ce •er for Adaptive Systems and Department
of Cognitive and Neural Systems, has been transferred to MIT's Lincoln Laboratory and
applied to large images containing range data gathered by a synthetic aperture radar (SAR)
sensor. Researchers at Lincoln Laboratory have in turn supplied enhanced versions of that
software to clients at other laboratories. The goal of the algorithm is" to make structures
such as motor vehicles, roads, or buildings more salient ýnd more interpretable to human
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observers than they are in the original imagery. Early automatic gain control by shunt-
ing center-surround networks compresses signal dynamic range while performing local con-
trast enhancement. Subsequent processing by filters sensitive to oriented contrast, including
short-range competition and long-range cooperation, segments the image into regions. The
segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and
large scales, wherein the "short-range" and "long-range" interactions within each scale occur
over smaller or larger image distances, corresponding to the size of the early filters of each
scale. Finally, a diffusive filling-in operation within the segmented regions generates surface
representations of visible structures. The combination of BCS and FCS helps to locate and
enhance structure over regions of many pixels, without the resulting blur characteristic of
approaches based on low spatial frequency filtering alone.

7. Visual Search: Modeling How Humans Rapidly Detect Targets in Clutter

[Article 56]

Visual search data were given a unified quantitative explanation by a model of how spa-
tial maps in the parietal cortex and object recognition categories in the inferotemporal cortex
deploy attentional resources as they reciprocally interact with visual representations in the
prestriate cortex. The model visual representations are organized into multiple boundary and
surface representations. Visual search in the model is initiated by organizing multiple items
that lie within a given boundary or surface representation into a candidate search grouping.
These items are compared with object recognition categories to test for matches or mis-
matches. Mismatches can trigger deeper searches and recursive selection of new groupings
until a target object is identified. This search model is algorithmically specified to quan-
titatively simulate search data using a single set of parameters, as well as to qualitatively
explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake
(1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Virzi, and Garbart (1984),
Cohen and Ivry (1991), Enns and Rensink (1990), He and Nakayama (1992), Humphreys,
Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman
(1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel
(1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to
recent variatiox,: on the Feature Integration and Guided Search models, and grounds the
analysis of visual search in neural models of preattentive vision, attentive object learning
and categorization, and attentive spatial localization and orientation.

8. Perception of Illusory Contours: Human Psychophysical Experiments to Test
and Constrain Development for Projects 2 and 6 [Article 69]

Lesher and Mingolla (1993) showed that illusory contours can be induced along direc-
tions approximately collinear to edges or approximately perpendicular to the ends of lines.
Using a rating scale procedure, they explored the relation between the two types of inducers
by systematically varying the thickness of inducing elements to result in varying amounts of
"edge-like" or "line-like" induction. Inducers for the illusory figures consisted of concentric
rings with arcs missing. Observers judged the clarity and brightness of illusory figures as the
number of arcs, their thicknesses, and spacing were parametrically varied. Degree of clarity
and amount of induced brightness were both found to be inverted-U functions of the number
of arcs. These results mandate that any valid model of illusory contour formation must ac-
count for interference effects between parallel lines or between those neural units responsible
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for completion of boundary signals in directions perpendicular to the ends of thin lines. Line
width was found to have an effect on both clarity and brightness, a finding inconsistent with
those models which employ only completion perpendicular to inducer orientation. Subse-
quent research by Lesher, Grossberg, and Mingolla reported in Lesher (1993) showed that
the Static BCS could fit the data of the Lesher and Mingolla (1993) experiment.

9. Transient Processing by Early Motion Mechanisms
In collaborative research with Grossberg and Mingolla, the Nogueira (1993) doctoral

research developed a neural network model of visual motion detection based on primate
physiology and human behavioral data. Unlike many computational approaches to motion
detection, the model receives inputs only from transient cells that are sensitive to changes
in luminance in accordance with key physiological data. The model includes analogs of
properties known to exist in the primate visual system, such as segregation of ON and OFF
channels and center-surround, spatially antagonistic input processing. The model behaves in
accordance with human perceptual data in several paradigms, including first-order motion,
second-order motion, drift-balanced motion, and the Chubb and Sperling gamma display.
First-order motion, for example, is defined by stimuli whose motion can be detected by
spatial correlation of the changes in mean luminance over time. Simulation results of first-
order motion are also in accordance with monkey physiological data, suggesting that coherent
dot motion can be detected using only transient (magnocellular) cell detectors. The existence
of two independent model changes (lightening and darkening) explains why certain cortical
directionally selective cells detect the motion of luminance edges with one polarity in one
direction and the other polarity in the reverse direction when response from retinal ON cells
are pharmacologically blocked.

10. Corticogeniculate Feedback: Modeling Its Role in Boundary Localization
and Brightness Perception

The Gove (1993) dissertation describes joint research with Grossberg and Mingolla on
development of the BCS and FCS using psychophysical data concerning the perception of
illusory contours, including the formation of contours, the separability of contour salience
and brightness effects, and line end contrast. The present work provides computational
demonstrations of the theory's competence in modeling several important illusory contour
phenomena. A key extension is the addition of a stage corresponding to the lateral geniculate
nucleus (LGN), which uses cortical feedback to enhance contrast at line ends and which forms
a model analog of perceptually enhanced brightness at line ends or corners. A key functional
role for such feedback is binocular matching monocular LGN activations with binocular
top-down cortical feedback. The simulated effects result. Simulations are done on synthetic
images of illusory contour stimuli, and the results are compared to data on human judgments
of the boundary sharpness and brightness enhancement of similar displays. The enhanced
model is also used to simulate perceptual grouping effects, such as those evident in Glass
patterns and the cafd wall illusion.

11. A Unified Explanation of Hyperacuity and Illusory Contour Data
Lesher's (1993) dissertation contains (among other projects) simulations describing how

the BCS can fit the illusory contour data of Project 9 in a manner that unifies the treatment
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of hyperacuity data and illusory contour formation, as first described by Grossberg (1987).
Tradeoffs in network design for optimal spatial resolution and for reconciling long-range
contextual information with local data are thereby ac.orded a unified treatment.

12. Design of Working Memories for Temporary Storage and Learning of Event
Sequences: Applications to 3-D Visual Object Recognition [Articles 1-4]

Working memory is the type of memory whereby a telephone number, or other novel
temporally ordered sequence of events, can be temporarily stored and then performed (Bad-
deley, 1976). Working memory, a kind of short-term memory (STM), can be quickly erased
by a distracting event, unlike long-term memory (LTM). There is a large experimental lit-
erature about working memory, as well as a variety of models (Atkinson and Shiffrin, 1971;
Cohen and Grossberg, 1987; Cohen, Grossberg, and Stork, 1987; Elman, 1990; Grossberg,
1970, 1978a, 1978b; Grossberg and Pepe, 1971; Grossberg and Stone, 1986; Gutfreund and
Mezard. 1988; Guyon, Personnaz, Nadal, and Dreyfus. 1988; Jordan, 1986: Reeves and Sper-
ling, 1986; Schreter and Pfeifer, 1989; Seibert, 1991; Seibert and Waxman, 1990a, 1990b;
Wang and Arbib, 1990).

The present class of models, called STORE (Sustained Temporal Order REcurrent) mod-
els, exhibit properties that have heretofore not been available in a dynamically defined work-
ing memory. In particular, STORE working memories are designed to encode the invariant
temporal order of sequential events, or items, that may be presented with widely differing
growth rates, amplitudes, durations, and interstimulus intervals. The STORE model is also
designed to enable all possible groupings of the events stored in STM to be stably learned and
remembered in LTM, even as new events perturb the system. In other words, these working
memories enable chunks (also called compressed, categorical, or unitized representations) of
a stored list to be encoded in LTM in a manner that is not erased by the continuous barrage
of new inputs to the working memory.

Working memories with these properties are important in many applications wherein
properties of behavioral self-organization are needed. Three important applications are real-
time self-organization of codes for variable-rate speech perception, sensory-motor planning,
and 3-D visual object recognition. Architectures for the first two types of application are de-
scribed in Cohen, Grossberg and Stork (1987) and Grossberg and Kuperstein (1989). STORE
working memory can both simplify and extend the capabilities of the Seibert and Waxman
model for 3-D visual object recognition (Seibert and Waxman, 1990a, 1990b; Seibert, 1991).

The STORE neural network working memories are based upon algebraically character-
ized working memories that were introduced by Grossberg (1978a, 1978b). These algebraic
working memories were designed to explain a variety of challenging psychological data con-
cerning working memory storage and recall. In these models, individual events are stored
in working memory in such a way that the pattern of STM activity across event representa-
tions encodes both the events that have occurred and the temporal order in which they have
occurred. In the cognitive literature, such a working memory is often said to store both item
information and order informntion (Healy, 1975; Lee and Estes, 1981; Ratcliff, 1978). The
models also include a mechanism for reading out events in the stored temporal order. An
event sequence can hereby be performed from STM even if it is not yet incorporated through
learning into LTM, much as a new telephone number can be repeated the first time that it
is heard.
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The large data base on working memory shows that storage and performance of temporal
order information from working memory is not always veridical (Atkinson and Shiffrin, 1971;
Baddeley, 1978; Reeves and Sperling, 1986) These deviations from veridical temporal order
in STM could be explained by the algebraic working memory model as consequences of two
design principles that have clear adaptive value. These principles are called the Invariance
Principle and the Normalization Rule (Grossberg, 1978b).

Invariance Principle: The spatial patterns of STM activation across the event repre-
sentations of a working memory are stored and reset in response to sequentially presented
events in such a way as to leave the temporal order codes of all past event groupings invariant.

In particular, a temporal list of events is encoded in STM in a way that preserves the
stability of previously learned LTM codes for familiar sublists of the list. For example,
suppose that the word MY has previously been stored in a working memory's STM and has
established a learned chunk in LTM. Suppose that the word MYSELF is then stored for the
first time in STM. The word MY is a syllable of MYSELF. The STM encoding of MY as a
syllable of MYSELF may not be the same as its STM encoding as a word in its own right.
On the other hand, MY's STM encoding as part of MYSELF should not be allowed to force
forgetting of the LTM code for MY as a word in its own right. If it did, familiar words, such
as MY, could not be learned as parts of larger words, such as MYSELF, without eliminating
the smaller words from the lexicon. More generally, new wholes could not be built from
familiar parts without erasing LTM of the parts.

Normalization Rule: The Normalization Rule algebraically instates the classical prop-
erty of the limited capacity of STM (Atkinson and Shiffrin, 1971).

The present research has shown how to design real-time neural networks that are capable
of storing in working memory the temporal order of arbitrary sequences of item representa-
tions. These events may occur with arbitrary rates, durations, and repeats. They are stored
in such a way that a categorization network (for example an ARTMAP) can stably learn
arbitrary subsequences of the stored events in compressed representations, or chunks.

This work opens up a new approach to solving the subgoal planning problem. This
core problem of cognitive psychology and artificial intelligence acknowledges that the correct
sequence of choices with which to attain a goal is often not known until choices are somehow
made and the goal is attained. A STORE working memory enables such choices to be stored
through time in such a way that subsequent success at a goal can select and learn those choice
subsequences that led to success and use these preferred subsequences for future planning
and control.

13. A Neural Architecture for Adaptive Control of Arm Movements [Articles
5-7,39-41,43]

This work has introduced and analysed several key neural modules for the adaptive
control of human and animal arm movements, and, by extension, provides new types of
autonomous controllers for technological applications. These modules include the Vector
Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint
arm trajectories, and the Factorization of Length and Tension (FLETE) model for accurate
position control under unexpected and predictive changes in external forces. The VITE
model is linked to neural data about parietal cortex, motor cortex, and basal ganglia. The
FLETE model helps to explain data about spinal cord and cerebellum.
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Further studies have shown hov. the correct VITE circuit parameters may be learned
in an unsupervised way during real-time performance, and how opponent combinations of
corollary discharge signals to the eyes may be organized to compute a cyclopean vergence-
spherical coordinate system that represents the location of a foveated target in head-centered
spatial coordirN-tes.

14. What-and-Where Neural Networks for Object Localization and Recognition
[Article 13]

This work describes a neural network model of how information about Where an object
is can be used to help recognize What it is. The Where processing stream automatically
computes an estimate of object location, size, and orientation. This spatial information
is computed using the same types of neural mechanisms that are used in emergent visual
segmentation by the Boundary Contour System (see Section 2). Thus spatial mechanisms
may be viewed as a later instan.tiation of mechanisms that are used for visual perception at
earlier processing stages.

The Where information is used to transform the What representation of an object into an
invariant form whereby it can be autonomously recognized by an ART or ARTMAP system
(see Section 1).

This What-and-Where network is inspired by cortical data about the parallel processing
streams that pass through inferotemporal cortex and parietal cortex. These parallel streams
ar- used to recognize objects (What) and to locate and manipulate them in space (Where).

15. Neural Pattern Generators for Quadruped Gait Generation [Articles 27-32]
This research has disclosed nonlinear neural network oscillators that are capable of gen-

erating the sequence of quadruped gaits-walk, trot, pace, and gallop-that is known from
quadruped locomotion. Phase transitions from one gait pattern to another, including an
increase in oscillation frequency, occur as a descending GO signal command is increased.
These circuits are also competent to simulate the in-phase and anti-phase relationships
of variable-frequency finger movements, the human walk-run gait transition, and the ele-
phant amble-walk transition. The work hereby clarifies how a biologically important class of
complex nonlinear neural oscillators work, while providing examples of new controllers for
possible future robots that could walk or run over bumpy terrain.
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WORKING MEMORY NETWORKS FOR LEARNING TEMPORAL ORDER

WITH APPLICATION TO 3-D VISUAL OBJECT RECOGNITION

Gary Bradskit, Gail A. Carpenter:, and Stephen Grossberg§

Neural Computation, 1992, 4, 270-286

Abstract

Working memory neural networks, called Sustained Temporal Order REcurrent (STORE)
models, encode the invariant temporal order of sequential events in short-term memory
(STM). Inputs to the networks may be presented with widely differing growth rates, ampli-
tudes, durations, and interstimulus intervals without altering the stored STM representation.
The STORE temporal order code is *designed to enable groupings of the stored events to be
stably learned and remembered in real time, even as new events perturb the system. Such
invariance and stability properties are needed in neural architectures which self-organize
learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual ob-
ject recognition. Using such a working memory, a self-organizing architecture for invariant
3-D visual object recognition is described. The new model is based on the model of Seibert
and \'Vaxman (1990a), which builds a 3-D representation of an object from a temporally
ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model,
consists of the following cascade of processing modules: Invariant Preprocessor - ART 2
STORE Model -- ART 2 - Outstar Network.

t Supported by DARPA (AFOSR 90-0083).
1 Supported in part by British Petroleum (89-A-1204), DARPA (AFOSR 90-0083) and

the National Science Foundation (NSF IRI 90-00530).
§ Supported in part by the Air Force Office of Scientific Research (AFOSR 90-128 and

AFOSR 90-0175), DARPA (AFOSR 90-0083), and the National Science Foundation (NSF
IRI 90-24877).
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STORE WORKING MEMORY NETWORKS FOR STORAGE
AND RECALL OF ARBITRARY TEMPORAL SEQUENCES

Gary Bradskit, Gail A. Carpentert, and Stephen Grossberg§

Technical Report CAS/CNS-TR-92-028, Boston University
Submitted to Biological Cybernetics

Abstract
Neural network models of working memory, called Sustained Temporal Order REcurrent

(STORE) models, are described. They encode the invariant temporal order of sequential
events in short term memory (STMi) in a way that mimics cognitive data about working
memory, including primacy, recency, and bowed order and error gradients. As new items
are presented, the pattern of previously stored items is invariant in the sense that relative
activations remain constant through time. This invariant temporal order code enables all
possible groupings of sequential events to be stably learned and remembered in real time,
even as new events perturb the system. Such a competence is needed to design self-organizing
temporal recognition and planning systems in which any subsequence of events may need to
be categorized in order to control and predict future behavior or external events. STORE
models show how arbitrary event sequences may be invariantly stored, including repeated
events. A preprocessor interacts with the working memory to represent event repeats in
spatially separate locations. It is shown why at least two processing levels are needed to
invariantly store events presented with arbitrary durations and interstimulus intervals. It
is also shown how network parameters control the type and shape of primacy, recency, or
bowed temporal order gradients that will be stored.

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0128) and
the Office of Naval Research (ONR N00014-91-J-4100 and ONR N00014-92-J-1309).

t Supported in part by British Petroleum (BP 89A-1204), ARPA (AFOSR 90-0083 and
ONR N00014-92-J-4015), the National Science Foundation (NSF IRI-90-00530), and the
Office of Naval Research (ONR N00014-91-J-4100).

§ Supported in part by the Air Force Office of Scientific Research (AFOSR F49620-92-J-
0225), ARPA (AFOSR 90-0083 and ONR N00014-92-J-4015) and the Office of Naval Re-
search (ONR N00014-91-J-4100 and ONR N00014-92-J-1309).
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NORMAL AND AMNESIC LEARNING, RECOGNITION,
AND MEMORY BY A NEURAL MODEL OF
CORTICO-HIPPOCAMPAL INTERACTIONS

Gail A. Carpenter and Stephen Grossberg

Technical Report CAS/CNS TR-92-021, Boston University
Trends in Neurosciences. 1993, 16,131-137

Abstract
The processes by which humans and other primates learn to recognize objects have been

the subject of many models. Processes such is learning, categorization, attention, memory
search, expectation, and novelty detection work together at different stages to realize object
recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model
class (Adaptive Resonance Theory, ART) and discuss how its structure and function might
relate to known neurological learning and memory processes, such as how inferotemporal
cortex can recognize both specialized and abstract information, and how medial temporal
amnesia may be caused by lesions in the hippocampal formation. The model also suggests
how hippocampal and inferotemporal processing may be linked during recognition learning.

Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175), British
Petroleum (BP 89A-1204), DARPA (AFOSR 90-0083), the National Science Foundation
(NSF IRI-90-00530), and the Office of Naval Research (ONR N00014-91-J-4100).
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A WHAT-AND-WHERE NEURAL NETWORK

FOR INVARIANT IMAGE PREPROCESSING

Gail A. Carpentert, Stephen Grossbergl. and Gregory WV. Lesher§

Proceedings of the International Joint Conference
on Neural Networks, 1992, III, 303-308

Abstract

A feedforward neural network for invariant image preprocessing is proposed that rep-
resents the position, orientation, and size of an image figure (where it is) in a multiplexed
spatial map. This map is used to generate an invariant representation of the figure that
is insensitive to position, orientation, and size for purposes of pattern recognition (what it
is). A multiscale array of oriented filters, followed by competition between orientations and
scales is used to define the Where filter.

t Supported in part by British Petroleum (BP 89-A-1204), DARPA (AFOSR 90-0083), the
National Science Foundation (NSF IRI-90-00530), and the Office of Naval Research (ONR
N00014-91-J-4100).

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175),
DARPA (AFOSR 90-0083), and the Office of Naval Research (ONR N00014-91-J-4100).

§ Supported under a National Science Foundation Graduate Fellowship.
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FUZZY ARTMAP: A NEURAL NETWORK ARCHITECTURE
FOR INCREMENTAL SUPERVISED LEARNING

OF ANALOG MULTIDIMENSIONAL MAPS

Gail A. ('arpentert, Stephen Crossberg, Natalya Markuzon§,
John H. Reynolds¶. and David B. Rosen¶

IEEE Transactions on Neural Networks, 1992, 3, 698-713

Abstract

A new neural network architecture is introduced for incremental supervised learning
of recognition categories and multidimensional maps in response to arbitrary sequences of
analog or binary input vectors, which may represent fuzzy or crisp sets of features. The
architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Res-
onance Theory (ART) neural networks by exploiting a close formal similarity between the
computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy
ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive
error and maximizes code compression, or generalization. This is achieved by a match track-
ing process that increases the ART vigilance parameter by the minimum amount needed to
correct a predictive error. As a result, the system automatically learns a minimal number of
recognition categories, or "hidden units", to meet accuracy criteria. Category proliferation
is prevented by normalizing input vectors at a preprocessing stage. A normalization pro-
cedure called complement coding leads to a symmetric theory in which the AND operator
(A) and the OR operator (v) of fuzzy logic play complementary roles. Complement coding
uses on-cells and off-cells to represent the input pattern, and preserves individual feature
amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all
adaptive weights can only decrease in time. Decreasing weights correspond to increasing
sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved
prediction is achieved by training the system several times using different orderings of the
input set. This voting strategy can also be used to assign confidence estimates to compet-
ing predictions given small, noisy, or incomplete training sets. Four classes of simulations
illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and
genetic algorithm systems. These simulations include (i) finding points inside vs. outside a
circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise
continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is
also compared to Sa!zberg's NGE system and to Simpson's FMMC system.

t Supported in part by British Petroleum (89-A-1204), DARPA (AFOSR 90-0083), the
National Science Foundation (NSF IRI 90-00530) and the Office of Naval Research (ONR
N00014-91-J-4100).

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175),
DARPA (AFOSR 90-0083) and the Office of Naval Research (ONR N00014-91-J-4100).

§ Supported in part by British Petroleum (89-A-1204) and the National Science Foundatioti
(NSF IR1 90-00530).

¶ Supported in part by DARPA (AFOSR 90-0083).
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NEURAL CONTROL OF INTERLIMB COORDINATION
AND GAIT TIMING IN BIPEDS AND QUADRUPEDS

Michael A. Cohent, Stephen Grossbergt,'and (Christopher Pribe§

Technical Report CAS/CNS-TR-93-004, Boston University
Submitted to Journal of Neurophysiology

Abstract
1) A family of central pattern generators, called GO Gait Generators, is described in which both the

frequency and the relative phase of oscillations are controlled by a scalar arousal or GO signal that instantiates
the will to act. The model cells obey shunting membrane equations, and interact via fast excitatory feedback
signals and slow inhibitory feedback signals, organized as an on-center off-surround anatomy.

2) With two excitatory cells, or cell populations, the model describes an opponent processing network
in which both in-phase and anti-phase oscillations can occur at different arousal levels. This two-channel
oscillator can also produce phase transitions from either in-phase to anti-phase oscillations, or anti-phase to
in-phase oscillations, in different parameter ranges, as the GO signal increases.

3) The two-channel oscillator is used to simulate data from human bimanual finger coordination tasks
in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high
frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur
at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases.
When driven by environmental patterns with intermediate phase relationships, the model's output exhibits
a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects.

4) A four-channel oscillator is used to simulate quadruped vertebrate gaits, including the amble, the
walk, all three pairwise gaits (trot, pace, and gallop), and the pronk. Spatial or temporal asymmetries in
oscillator activation by the GO signal can trigger these transitions. Rapid transitions are simulated in the
order-walk, trot, pace, and gallop-that occurs in the cat.

5) This precise switching :ontrol is achieved by using GO-dependent modulation of the model's inhibitory
interactions that generates a different functional connectivity in a single network at different arousal levels.
Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally
reported in invertebrates. A role for such a mechanism in gait-switching is predicted to occur in vertebrates.

6) A four channel oscillator can generate the two standard human gaits: the walk and the run. Although

these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation
frequencies that overlap. The model simulates the walk and the run via qualitatively different waveform
shapes. The fraction of cycle that activity is above threshold quantitatively distinguishes the two gaits,

much as the duty cycles of the feet are longer in the walk than in the run.

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0128 and
AFOSR F49620-92-J-0225).

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175 and
AFOSR F49620-92-J-0225), the National Science Foundation (NSF IRI-90-24877), and the
Office of Naval Research (ONR N00014-92-J-1309).

§ Supported in part by the Army Research Office (ARO DAAL03-S8-K-0088), the Ad-
vanced Research Projects Agency (AFOSR 90-0083), the National Science Foundation (NSF
IRI-90-24877), and the Office of Naval Research (ONR N00014-92-J-1309).
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FUZZY ART: FAST STABLE LEARNING AND CATEGORIZATION
OF ANALOG PATTERNS BY AN ADAPTIVE RESONANCE SYSTEM

Gail A. Carpentert, Stephen Grossbergi, and David B. Rosen*

Neural Networks, 1991, 4, 759-771

Abstract
A Fuzzy Adaptive Resonance Theory (ART) model capable of rapid stable learning of

recognition categories in response to arbitrary sequences of analog or binary input patterns
is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1
neural network, which learns to categorize only binary input patterns. The generalization to
learning both analog and binary input patterns is achieved by replacing appearances of the
intersection operator (n) in ART 1 by the MIN operator (A) of fuzzy set theory. The MIN
operator reduces to the intersection operator in the binary case. Category proliferation is
prevented by normalizing input vectors at a preprocessing stage. A normalization procedure
called complement coding leads to a symmetric theory in which the MIN operator (A) and
the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding
uses on-cells and off-cells to represent the input pattern, and preserves individual feature
amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all
adaptive weights can only decrease in time. Decreasing weights correspond to increasing
sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning
stops when the input space is covered by boxes. With fast learning and a finite input set of
arbitrary size and composition, learning stabilizes after just one presentation of each input
pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that
buffers system memory against noise. Using this option, rare events can be rapidly learned,
yet previously learned memories are not rapidly erased in response to statistically unreliable
input fluctuations.

t Supported in part by British Petroleum (89-A-1204), DARPA (AFOSR 90-0083), and
the National Science Foundation (NSF IRI-90-00530).

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175) and
DARPA (AFOSR 90-0083),

* Supported in part by DARPA (AFOSR 90-0083).
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CORTICAL DYNAMICS OF FEATURE BINDING AND RESET:

CONTROL OF VISUAL PERSISTENCE

Gregory Francist, Stephen Grossbergt, and Ennio Mingolla§

Vision Research, in press, 1994

Abstract

We hypothesize that many properties of visual persistence are caused by positive feed-
back in the visual cortical circuits that are responsible for the binding or segmentation of
visual features into coherent visual forms, and that the degree of persistence is limited by
circuits that reset these segmentations at stimulus offset. We propose a model of the cortical
local circuitry responsible for such feature binding and reset, and use the model to quantita-
tively simulate psychophysical data showing increase of persistence with spatial separation of
a masking stimulus; inverse relation of persistence to flash luminance and duration; greater
persistence of illusory contours than real contours, with maximal persistence at an interme-
diate stimulus duration; and dependence of persistence on pre-adapted stimulus orientation.
Data concerning cortical cell responses to illusory and real contours are also analysed, as are
alternative models of feature binding and persistence properties.

t Supported by a National Science Foundation Graduate Fellowship.
t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175).

DARPA (AFOSR 90-0083), and the Office of Naval Research (ONR N00014-91-J-4100).
S Supported iA part by the Air Force Office of Scientific Research (AFOSR 90-0175).
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NEURAL REPRESENTATIONS FOR SENSORY-MOTOR CONTROL,
I: HEAD-CENTERED 3-D TARGET POSITIONS

FROM OPPONENT EYE COMMANDS

Douglas Crevet, Stephen Grossbergt, Frank Guenthert, and Daniel Bullockt

Acta Psychologica, 1992, 82, 115-1:38

Abstract
This article describes how corollary discharges from outflow eye movement commands can

be transformed by two stages of opponent neural processing into a head-centered represen-
tation of 3-D target position. This representation implicitly defines a cyclopean coordinate
system whose variables approximate the binocular vergence and spherical horizontal and
vertical angles with respect to the observer's head. Various psychophysical data concerning
binocular distance perception and reaching behavior are clarified by this representation. The
representation provides a foundation for learning head-centered and body-centered invariant
representations of both foveated and non-foveated 3-D target positions. It also enables a
solution to be developed of the classical motor equivalence problem, whereby many different
joint configurations of a redundant manipulator can all be used to realize a desired trajectory
in 3-D space.

t Supported in part Air Force Office of Scientific Research (AFOSR URI 90-0175), Defense
Advanced Research Projects Agency (DARPA AFOSR-90-0083), and the National Science
Foundation (NSF IRI-87-16960 and NSF IRI-90-24877).

t Supported in part by the National Science Foundation (NSF IRI-87-16960 and NSF
IRI-90-24877).
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ADAPTIVE VECTOR INTEGRATION TO ENDPOINT:
SELF-ORGANIZING NEURAL CIRCUITS

FOR CONTROL OF PLANNED MOVEMENT TRAJECTORIES

Paolo Gaudianot and Stephen Grossberg•

Human Movement Science, 1992, 11, 141-155

Abstract
A neural network model is described for adaptive control of arm movement trajectories

during visually guided reaching. The model clarifies how a child, or ihfant robot, can learn to
reach for objects that it sees. Piaget has provided basic insights with his concept of a circular
reaction. As an infant makes internally generated hand movements, the eyes automatically
follow this motion. A transformation is learned between the visual representation of hand
position and the motor representation of hand position. Learning of this transformation
eventually enables the child to accurately reach for visually detected targets. Grossberg and
Kuperstein (1989) have shown how the eye movement system can use visual error signals to
correct movement parameters via cerebellar learning. Here it is shown how the arm move-
ment system can endogenously generate movements which lead to adaptive tuning of arm
control parameters. These movements also activate the target position representations that
are used to learn the visuo-motor transformation that controls visually guided reaching. The
arm movement properties obtain in the Adaptive Vector Integration to Endpoint (AVITE)
model, an adaptive neural circuit based on the VITE model for arm and speech trajectory
generation of Bullock and Grossberg (1988a).

t Supported in part by the National Science Foundation (NSF IRI-87-16960)
t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175),

DARPA (AFOSR. 90-0083), and the National Science Foundation (NSF IRI-87-16960).
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A SOLUTION OF THE FIGURE-GROUND PROBLEM

FOR BIOLOGICAL VISION

Stephen Grossbergt

Technical Report CAS/CNS-TR-92-020, Boston University
Neural Networks, 1993, 6, 463-483

Abstract
A neural network model of 3-D visual perception and figure-ground separation by visual

cortex is introduced. The theory provides a unified explanation of how a 2-D image may
generate a 3-D percept; how figures pop-out from cluttered backgrounds; how spatially sparse
disparity cues can generate continuous surface representations at different perceived depths;
how representations of occluded regions can be completed and recognized without usually
being seen; how occluded regions can sometimes be seen during percepts of transparency; how
high spatial frequency parts of an image may appear closer than low spatial frequency parts;
how sharp targets are detected better against a figure and blurred targets are detector better
against a background; how low spatial frequency parts of an image may be fused while high
spatial frequency parts are rivalrous; how sparse blue cones can generate vivid blue surface
percepts; how 3-D neon color spreading, visual phantoms, and tissue contrast percepts are
generated; how conjunctions of color-and-depth may rapidly pop-out during visual search.
These explanations arise derived from an ecological analysis of how monocularly viewed
parts of an image inherit the appropriate depth from contiguous binocularly viewed parts,
as during DaVinci stereopsis. The model predicts the functional role and ordering of multiple
interactions within and between the two parvocellular processing streams that join LGN to
prestriate area V4. Interactions from cells representing larger scales and disparities to cells
representing smaller scales and disparities are of particular importance.

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175),
ARPA (AFOSR 90-0083 and ONR N00014-92-.J-4015), and the Office of Naval Research
(ONR N00014-91-J-4100).

48



3-D VISION AND FIGURE-GROUND SEPARATION
BY VISUAL CORTEX

Stephen Grossbergt

Technical Report CAS/CNS-TR-92-019, Boston University
Perception and Psychophysics, 1994, 55, 48-120

Abstract
A neural network theory of 3-D vision, called FACADE Theory, is described. The theory

proposes a solution of the classical figure-ground problem for biological vision. It does so by
suggesting how boundary representations and surface representations are formed within a
Boundary Contour System (BCS) and a Feature Contour System (FCS). The BCS and FCS
interact reciprocally to form 3-D boundary and surface representations that are mutually
consistent. Their interactions generate 3-D percepts wherein occluding and occluded object
parts are separated, completed, and grouped. The theory clarifies how preattentive processes
of 3-D perception and figure-ground separation interact reciprocally with attentive processes
of spatial localization, object recognition, and visual search. A new theory of stereopsis is
proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and ori-
entations are cc-nbined by context-sensitive filtering, competition, and cooperation to form
coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-
out, including: boundary contrast between spatially contiguous boundaries, whether due to
scenic differences in luminance, color, spatial frequency, or disparity; partially ordered inter-
actions from larger spatial scales and disparities to smaller scales and disparities; and surface
filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D
pop-out from a 2-D picture, DaVinci stereopsis, 3-D neon color spreading, completion of
partially occluded objects, and figure-ground reversals are analysed. The BCS and FCS sub-
systems model aspects of how the two parvocellular cortical processing streams that join the
Lateral Geniculate Nucleus to prestriate cortical area V4 interact to generate a multiplexed
representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is
suggested to support figure-ground separation and to interact with cortical mechanisms of
spatial attention, attentive object learning, and visual search. Adaptive Resonance Theory
(ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with
a visual object recognition system in inferotemporal cortex (IT) for purposes of attentive
object learning and categorization. Object attention mechanisms of the What cortical pro-
cessing stream through IT cortex are distinguished from spatial attention mechanisms of
the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS
signals interact with the model What steam. Parvocellular FCS and magnocellular Motion
BCS signals interact with the model Where stream. Reciprocal interactions between these
visual, What, and Where mechanisms are used to discuss data about visual search and sac-
cadic eye movements, including fast search of conjunctive targets, search of 3-D surfaces,
selective search of like-colored targets, attentive tracking of multi-element groupings, and
recursive search of simultaneously presented targets.

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175 and
AFOSR F49620-92-J-0499), ARPA (AFOSR 90-0083 and ONR N00014-92-J-4015), and the
Office of Naval Research (ONR N00014-914J-4100).
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NEURAL DYNAMICS OF MOTION PERCEPTION:

DIRECTION FIELDS, APERTURES, AND RESONANT GROUPING

Stephen Crossbergt and Enfiio Mingollat

Perception and Psychophysics, 1993, 53, 243-278

Abstract
A neural network model of global motion segmentation by visual cortex is described.

Called the Motion Boundary Contour System (BCS), the model clarifies how ambiguous
local movements on a complex moving shape are actively reorganized into a coherent global
motion signal. Unlike many previous researchers, we analyse how a coherent motion signal is
imparted to all regions of a moving figure, not only to regions at which unambiguous motion
signals exist. The model hereby suggests a solution to the global aperture problem. The

'Motion BCS describes how preprocessing of motion signals by a Motion Oriented Contrast
Filter (MOC Filter) is joined to long-range cooperative grouping mechanisms in a Motion
Cooperative-Competitive Loop (MOCC Loop) to control phenomena such as motion capture.
The Motion BCS is computed in parallel with the Static BCS of Grossberg and Mingolla
(1985a, 1985b, 1987). Homologous properties of the Motion BCS and the Static BCS,
specialized to process movement directions and static orientations, respectively, support a
unified explanation of many data about static form perception and motion form perception
that have heretofore been unexplained or treated separately. Predictions about microscopic
computational differences of the parallel cortical streams V1 - MT and V1. -. V2 --. MT
are made, notably the magnocellular thick stripe and parvocellular interstripe streams. It is
shown how the Motion BCS can compute motion directions that may be synthesized from
multiple orientations with opposite directions-of-contrast. Interactions of model simple cells,
complex cells, hypercomplex cells, and bipole cells are described, with special emphasis given
to new functional roles in direction disambiguation for endstopping at multiple processing
stages and to the dynamic interplay of spatially short-range and long-range interactions.

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90.0175),
DARPA (AFOSR 90-0083), and the Office of Naval Research (ONR N00014-91-J-4100).

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175).
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A NEURAL THEORY OF ATTENTIVE VISUAL SEARCH:
INTERACTIONS OF BOUNDARY,. SURFACE, SPATIAL,

AND OBJECT REPRESENTATIONS

Stephen Grossbergt, Ennio Mingollat and William D. Ross§

Technical Report CAS/CNS-TR-93-038, Boston University
Psychological Review, in press, 1994

Abstract
Visual search data are given a unified quantitative explanation by a model of how spatial

maps in the parietal cortex and object recognition categories in the inferotemporal cortex
deploy attentional resources as they reciprocally interact with visual representations in the
prestriate cortex. The model visual representations are organized into multiple boundary and
surface representations. Visual search in the model is initiated by organizing multiple items
that lie within a given boundary or surface representation into a candidate search grouping.
These items are compared with object recognition categories to test for matches or mis-
matches. Mismatches can trigger deeper searches and recursive selection of new groupings
until a target object is identified. This search model is algorithmically specified to quan-
titatively simulate search data using a single set of parameters, as well as to qualitatively
explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake
(1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Virzi, and Garbart (1984),
Cohen and Ivry (1991), Enns and Rensink (1990), He and Nakayama (1992), Humphreys,
Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman
(1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel
(1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to
recent variations on the Feature Integration and Guided Search models, and grounds the
analysis of visual search in neural models of preattentive vision, attentive object learning
and categorization, and attentive spatial localization and orientation.

t Supported in part by Air Force Office of Scientific Research (AFOSR F49620-92-J-0499),
ARPA (AFOSR 90-0083 and ONR N00014-92-J-4015), and the Office of Naval Research
(ONR N00014-91-J-4100).

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175 and
F49620-92-J-0334), the Northeast Consortium for Engineering Education (NCEE A303-21-
93), and the Office of Naval Research (ONR N00014-91-.J-4100).

J Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175), British
Petroleum (BP 89A-1204), the National Science Foundation (NSF IRI 90-00530), and the
Office of Naval Research (ONR N00014-91-J-4100).
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THE ROLE OF EDGES AND LINE-ENDS

IN ILLUSORY CONTOUR FORMATION

Gregory W. Leshert and Ennio Mingollat

Vision Research, 1993, 33, 2253-2270

Abstract

Illusory contours can be induced along directions approximately collinear to edges or ap-
proximately perpendicular to the ends of lines. Using a rating scale procedure, they explored
the relation between the two types of inducers by systematically varying the thickness Of in-
ducing elements to result in varying amounts of "edge-like" or "line-like" induction. Inducers
for the illusory figures consisted of concentric rings with arcs missing. Observers judged the
clarity and brightness of illusory figures as the number of arcs, their thicknesses, and spac-
ing were parametrically varied. Degree of clarity and amount of induced brightness were
both found to be inverted-U functions of the number of arcs. These results mandate that
any valid model of illusory contour formation must account for interference effects 'between
parallel lines or between those neural units responsible for completion of boundary signals
in directions perpendicular to the ends of thin lines. Line width was found to have an effect
on both clarity and brightness, a finding inconsistent with those models which employ only
completion perpendicular to inducer orientation.

t Supported in part by the Air Force Office of Scientific Research (AFOSR.F49620-92-J-
0334) and a National Science Foundation Graduate Fellowship.

± Supported in part by the Air Force Office of Scientific Research (AFOSR 90,0175 'and
AFOSR F49620-92-J-0334) and the Office of Naval Research (ONR N00014-91-J-4100).
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THE PERCEPTION OF GLOBALLY COHERENT MOTION

Eunio Mingollat, Jame's T. Todd, and J. Farley Norman

Vision Research, 1992, 32, 1015-1031

Abstract
How do human observers perceive a coherent pattern of motion from a disparate set of

local motion measures? Our research has examined how ambiguous motion signals along
straight contours are spatially integrated to obtain a globally coherent perception of mo-
tion. Observers viewed displays containing a large number of apertures, with each aperture
containing one or more contours whose orientations and velocities could be independently
specified. The total pattern of the contour trajectories across the individual apertures was
manipulated to produce globally coherent motions, such as rotations, expansions, or transla-
tions. For displays containing only straight contours extending to the circumferences of the
apertures, observers' reports of global motion direction were biased whenever the sampling
of contour orientations was asymmetric relative to the direction of motion. Performance
was improved by the presence of identifiable features, such as line ends or crossings, whose
trajectories could be tracked over time. The reports of our observers were consistent with a
pooling process involving a vector average of measures of the component of velocity normal
to contour orientation, rather than with the predictions of the intersection-of-constraints
analysis in velocity space.

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0175).
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VII. TECHNOLOGY TRANSFERS

Neural network systems, developed at Boston University with ARPA support, are being
applied to areas that range from government and commercial to medical and even musical.
Some examples of a rapidly growing number of technology transfers are listed below. Other
examples are classified or proprietary. Many of these applications have been facilitated by
collaborations of scientists and engineers from government laboratories and private industry
with Boston University faculty and students. Technology transfer is accelerating, as MA
and PhD graduates of the Department of Cognitive and Neural Systems move into full-time
research and development positions in government, industry, and academia.
1. ART 1 is the central component of an airplane parts design and retrieval system at the

Boeing Seattle plant. There, the system has been implemented in the Boeing 777 CAD
system, where the neural architecture reduced parts inventory by a factor of 9 in the
sections where it was used. System expansion is now planned. In addition, the parts
retrieval system is implemented in the Boeing 747 and 767 production processes.
Caudell, T., Smith, S., Johnson, C., Wunsch, D., and Escobedo, R. (1991). An industrial
application of neural networks to reusable design. Adaptive neural systems, Technical
Report BCS-CS-ACS-91-001, Seattle, WA: The Boeing Company, pp. 185-190.
Smith, S.D.G., Escobedo, R., and Caudell, T.P. (1993). An industrial strength neural
network application. Proceedings of the world congress on neural networks
(WCNN-93), Hillsdale, NJ: Lawrence Erlbaum Associates, 1-490-494.

2. Applications of ART systems for manufacturing is the subject of a forthcoming book.
Kumara, S.R-T., Merchawi, N.S., Karmarthi, S.V., and Thazhu'aveetil, M. (1993). Neu-
ral networks in design and manufacturing. Chapman and Hall Publishers.

3. Fuzzy ART is a key component of a robot sensory-motor system under development at
MIT Lincoln Laboratory.
Bachelder, I.A., Waxman, A.M., and Seibert, M. (1993). A neural system for mobile
robot visual place learning and recognition. Proceedings of the world congress on
neural networks (WCNN-93), Hillsdale, NJ: Lawrence Erlbaum Associates, 1-512-
517.

4. ART 2-A is the basis of the commercial software program Open Sesame that allows a
Macintosh operating system to adapt to a user's work habits."
Johnson, C. (1993). Agent learns user's behavior. Electrical Engineering Times, June
28, pp. 43, 46.
Alper Caglayan, President, Charles River Analytics, Inc., Cambridge, Massachusetts.

5. ART 2 and ART 2-A are being used at MIT Lincoln Laboratory for face recognition and
3-D object recognition.
Seibert, M. and Waxman, A.M. (1991). Learning and recognizing 3D objects from multi-
ple views in a neural system. In H. Wechsler (Ed.), Neural networks for perception,
Volume 1. New York: Academic Press.
Seibert, M. and Waxman, A.M. (1993). An approach to face recognition using saliency
maps and caricatures. Proceedings of the world congress on neural networks
(WCNN-93), Hillsdale, N.J: Lawrence Erlbaum Associates, 111-661-664.
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Seibert, M. and Waxman, A.M. (1992). Adaptive 3D object recognition from multiple
views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 107-124.

6. ART 2 and ART 2A are being used at Sandia National Laboratories, for target recogni-
tion.

Moya, M.M., Koch, M.W., and Hostetler, L.D. (1993). One-class classifier networks
for target recognition applications. Proceedings of the world congress on neural
networks (WCNN-93), Hilisdale, N J: Lawrence Erlbaum Associates, 111-797-801.

7. ART 2 and ART 2-A are being used in Japan, for wave recognition in electrocardiograms.

Suzuki. Y., Abe, Y., and Ono, K. (1993) Self-organiizing QRS wave recognition system
in ECG using ART 2. Proceedings of the world congress on neural networks
(WCNN-93), Hillsdale, NJ: Lawrence Erlbaum Associates, IV-39-42.

S. Although recently introduced, fuzzy ARTMAP is already being applied to a variety of
problems. Some of these applications have been described in the public domain. These
include control of nuclear reactors.

Keyvan, S., Durg, A., and Rabelo, L.C. (1993). Application of artificial neural networks
for development of diagnostic monitoring system in nuclear plants. American Nuclear
Society Conference Proceedings, April 18-21, 1993.

9. ARTMAP is also being used for medical database analysis.

Ham, F.M. and Han, S.W. (1993). Quantitative study of the QRS complex using
fuzzy ARTMAP and the MIT/BIH arrhythmia database. Proceedings of the world
congress on neural networks (WCNN-93), Hillsdzle. N.J: Lawrence Erlbaum Asso-
ciates, 1-207-211.

Harvey, R.M. (1993). Nursing diagnosis by computers: An application of neural net-
works. Nursing Diagnosis, 4, 26-34.

Goodman, P.H., Kaburlasds, V.G.'i Egbert, D.D., Carpenter, G.A., Grossberg, S., Rey-
nolds, J.H., Rosen, D.B., and Hartz, A.J. (1992).. Fuzzy ARTMAP neural network
compared to linear discriminant analysis prediction of the length of hospital stay in
patients with pneumonia. Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (Chicago, October, 1992). New York: IEEE Press,
I, 748-753.

10. Another ARTMAP application is the prediction of protein secondary structure.

Mehta, B.V., Vij, L., and Rabelo, L.C. (1993). Prediction of secondary structures of
proteins using fuzzy ARTMAP. Proceedings of the world congress on neural net-
works (WCNN-93), Hillsdale, NJ: Lawrence Erlbaum Associates, 1-228-232.

11. The Sharp Corporation is developing commercial applications of ART and ARTMAP
systems (K. Iizuka, Nara, Japan).

12. An enhanced BCS/FCS system is being used to process synthetic aperture radar (SAR)
imagery. This system r-as developed at Boston University, using unclassified samples of
SAR images. the technology was then transferred to MIT Lincoln Laboratory, where
the system is being applied to a more complete SAR database.

Allen Waxman, MIT Lincoln Laboratory.
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13. The BCS/FCS system has been developed into a system for the automatic segmentation
and labelling of medical magnetic resonance imagery, at Massachusetts General Hospital.

Worth, A.J., Lehar, S., and Kennedy, D.N. (1992). A recurrent cooperative/competi-
tive field for segmentation of magnetic resonance brain images. IEEE Transactions on
Knowledge and Data Engineering, 4. 156-161.

Dr. David Kennedy, Center for Morphometric Analysis, Massachusetts General Hospital.

14. A research team at the University of Hamburg (Germany) is also using the BCS/FCS
for enhancement of MRI imagery.

Heiko Neumann, Department of Informatics.
15. Mitre Corporation has applied the BCS/FCS system to detect and enhance coherent

patterns in satrlite weather imagery.
Ira Smotroff, Senior Scientist, Mitre Corporation, Bedford, Massachusetts.

16. A system that uses the BCS/FCS for textural segmentation and classification of radar
imagery is being developed at the Naval Surface Warfare Center.

George W. Rogers, Dahlgren, Virginia.
17. BCS/FCS image processing has been used at Sandia National Laboratories in a system

that produces a clean circuit board image, eliminating soldering residue and illumination
distortions.
Koch, M.W. and Moya, M.M. (1993). Detecting residue on a printed circuit board: An
application of the Boundary Contour/Feature Contour System. Proceedings of the
World Congress on Neural Networks, 1993, III, 789-792.

18. HNC is applying BCS/FCS a. part of a government contract to improve cruise missile
guidance and target segmentation.
Robert Hecht-Nielsen, HNC, San Diego, California.
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VIII. NORTHEASTERN UNIVERSITY PROJECT SUMMARIES

Adam Reeves
Department of Psychology
Northeastern University

Boston Massachusetts 02115

The proposed work concerned the mechanisms underlying perception o` color. Work was
proposed in three areas; color appearance in Mondriaan displays (I); adaptational history
(II); and transient tritanopia/euchromatopsia (III). As reported last year, additional work
has been done in electrophysiology, specifically concerning color in the ERG (IV), and spatial
effects on the ERG and VEP (V).

1. Mondrian Displays
We have studied color constancy in Land-type "Mondrian" displays; fhat is, displays

of several abutted homogeneous colored "papers", which in our work have been simulated
on a high-resolution color monitor. This work has been done with L. E. Arend of the Eye
Research Institute, as part of the URI grant.

As is now well known, we require observers to make matches between standard and com-
parison displays lit (in the simulation) by different phases of daylight. We ask whether color
constancy can be obtained (i.e., whether the matches would be independent of illuminant).
Our studies feature (1) control of adaptational state; (2) control of the observer's task (to
match surface appearances, or to match chromaticities); (3) control of stimulus complexity
(annular versus Mondrian-type displays); (4) use of standard and comparison stimuli with
the same surrounds, to avoid unequal induction; (5) use of binocular vision, to avoid the
standard haploscopic method in which standard and comparison are presented to different
eyes and so fall on differently-adapted retinae.

The original study (Arend and Reeves, 1986, Journal of the Optical Society of America
(A), 3) showed that when the state of adaptation is kept roughly constant by requiring
the observer to scan back and forth between comparison and standard displays, the extent
of color constancy depends primarily on instruction and only very secondarily on stimulus
complexity, although in the achromatic case, constancy also depends on depth relations
(Scbirillo, Reeves, and Arend, 1990). Color constancy is strong with surface appearance
("paper") matches, but weak or absent in chromaticity ("hue and saturation") matches
(Arend, Reeves, Schirillo, and Goldstein, 1991). A similar pattern of results is obtained when
standard and comparison displays are alternated, rather than being presented simultaneously
(Reeves and Arend, 1992). This is important because color constancy would not be expected
across two simultaneous displays if the visual system extracted a mean illuminant over the
entire visual field. Therefore, the near absence of color constancy in the chromaticity task
is especially significant in this experiment.

We have also asked subjects to set a single target paper in a single Mondrian to a specified
unique color (red, green, blue, yellow, or grey). Once more, we have found color constancy
to be poor in the chromaticity task. This result is important, because one might have argued
that temporal averaging of the illuminants (rather than spatial) across displays occurred in
the previous studies. Either spatial or temporal averaging would prevent colo- constancy.
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The unique hue study controlled for this because only one display, with one illuminant, is
seen in each block of trials.

We have also found approximate color constancy (near 80%) for the chromaticity instruc-
tion, when adaptation to the mean illuminant is produced by interposing 5 sec homogeneous
adapting fields between stimulus presentations (Reeves and Arend, 1992). This result would
be expected from classical (Von Kries-type) adaptation.

2. Adaptational History: Eye Tracker
We had planned to study the effect oV the adaptational history on color appearence when

the eyes are free to scan the display naturally. As previously reported, work with our Gen-
eration V SRI Purkinje Eye-tracker was halted by technical problems with the Eye tracker.
We have now obtained a service contract for the Eye Tracker from Forward Technologies
(Warren Ward), from May 1993 to May 1994, 1/3 rd. of which was paid by the URI grant.
The machine is now in working order, but this only happened during the extension period
to the grant, and there are no results to report yet.

3. Thresholds: Transient Tritanopia/Euchromatopsia
Work has been done with Michael Rudd and Stephen Grossberg to model transient eu-

chromatopsia (i.e., transient tritanopia and its analogues in the red/green system). The
essential finding is that turning off or down a colored background can greatly reduced the
sensitivity of the red/green and yellow/blue hue pathways, even though normal dark adapta-
tion (recovery of sensitivity) occurs for luminance. The standard model for this, of Pugh and
Mollon, postulates a slow (15 sec time-constant) "restoring force" which builds up during
light adaptation and suddenly rebounds when the light is turned off. This model, however,
cannot handle the result (of Reeves) that transient euchromatopsia can be eliminated by 1 Hz
flicker during the adaptation period. The new model employs two of Grossberg's theoretical
circuits, an initial saturating stage followed by a gated dipole.

Work was done with James Schirillo to study the field additivity of the M-pathway, as
isolated in varying spatial conditions including Stiles's. We found additivity in both Stiles'
large spot and Stockman's tiny spot conditions, but strong evidence for cancellation (sub-
additivity) when field and test were co-incident (Foster's conditions). In the latter case, color
appearence also changes. We suggest a role for opponent processes that depends on spatial
configuration (Schirillo and Reeves, 1993).

4. Electrophysiology: Color

The PI has added some studies of the electro-retinogram to the work originally proposed,
using Erich Sutter's M-sequence stimulation technique (Sutter and Tran, Vision Res., 1992)
to obtain maps of L-cone, M-cone, L-M, and L+M channels across the retina (Reeves, Wu,
and Sutter, 1991, 1992; Sutter, Wu, and Reeves, 1993), using cone isolation and channel
isolation methods. In addition, interactions between channels are being tested using the
two-input M-sequence method. Results show that a simple picture of independent cclor
(L - M) and luminance (L + M) processing channels may be incorrect. The preliminary
data on this are complicated; for example, it appears that luminance responses influence the
first-order kernel of the color response with a lag of two to four frames (each frame being
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15 msec), but the color response does not influence the first-order kernel of the luminance
response.

5. Electrophysiology: Spatial Effects: ERG
We (Yang, Reeves, and Bearse, 1990) showed that linear systems analysis can account

for spatial factors in most published pattern electro-retinogram (PERG) work. Evidence for
linearity was from contrast linearity and tests of superposition (the latter only in a limited
way). We found a single band-pass spatial filter (scaled for the periphery) can account for
data from 13 PERG studies employing a wide variety of 2-D patterns (checks, gratings,
annuli, full-fields). We also found evidence that the ERG was approximately linear with
contrast, as must be the case for this approach to be viable, and linear with the extent of
spatial displacement (Wu, Reeves, and Armington, 1992). However, the recent work with
Sutter's method has shown non-linearities of the order of 20% of the total response in the
fovea, and of up to 10% in the periphery. Thus the linear approximation may be reasonable
only with full-field stimuli for which the foveal c6ntribution is small, or with purely peripheral
(annular) stimuli.

6. Electrophysiology: Spatial Effects: VEP
Additional work with cortical potentials (the VEP) has shown that the VEP is not

linear with the extent of spatial displacement (Wu, Reeves, and Armington, 1992). It is
well known that the VEP is not linear with contrast. Therefore, attempts to model VEP
amplitude using simple linear spatial filters are not likely to succeed. However, we have
found that the power of the VEP is approximately linear with contrast up to quite high
contrasts (Yang and Reeves, 1991, 1993). We have also found that the power of the VEP
(not amplitude) obeys superposition, using specially tailored stimulus waveforms (so-called
weighted Hermite polynomials, or WHPs) which to some extent take into account the spatial
inhomogeneity of the visual system. VEP power elicited by a sum of WHPs equals the sum
of the powers elicited by each individual WHP; and the VEP power elicited by alternating
between two WHPs equals the difference. At high contrasts, some saturation occurs, even
for the VEP power. However, the measured responses to the WHPs can be used at all but
the highest contrasts to permit synthesis of responses to other stimuli, as WHPs form an
orthonormal basis set.

7. Publications: Papers during URI Grant Period

Arend, L.E., Reeves, A., Schirillo, J., and Goldstein, R. (1991). Simultaneous color
constancy: Papers with diverse Munsell values. Journal of the Optical Society of America
(A), 8, 661-672.
Lemley, C. and Reeves, A. (1992). How visual imagery interferes with visual perception.
Psychological Review, 99, 633-649.
Peli, E., Yang, J., Goldstein, R., and Reeves, A. (1991). Effect of luminance on supra-
threshold contrast matching. Journal of the Optical Society of America (A), 8, 1352-
1359.
Reeves, A. (1992). Areas of confusion and ignorance in color science. Behavioral and
Brain Sciences, 15, 49-50 (Commentary).
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Reeves, A. (1993). The visual perception of time: Temporal resolution. In W. Prinz and
B. Bridgeman (Eds.), Handbook of perception and action: Volume 1: Percep-
tion. New York: Academic Press.
Reeves, A. and Bearse, M. (1931). The luminance dependence of the pattern-evoked
electro-retinogram. In B. Blum (Ed.), Channels in the visual nervous system:
Neurophysiology, psychophysics and models. Tel Aviv: Freund Publishing.
Schirillo, J., Reeves A., and Arend, L.E. (1990). Perceived lightness, but not bright-
ness, of achromatic surfaces depends on perceived depth information. Perception and
Psychophysics, 48. 82-90.

Wu, S., Armington, J.C., and Reeves, A. (1992). Electroretinograms (ERGs) and visual
evoked potentials (VEPs) elicited by pattern displacement. Visual Neuroscience, 8, 127-
136.
Yang, J. and Reeves, A. (1991). The harmonic oscillator model of early visual image
processing. SPIE Visual Communications and hnage Science, 1606, 520-530.
Yang, J., Reev.es, A., and Bearse, M. (1991). Spatial linearity of the pattern electroretino-
gram. Journal of the Optical Society of America (A), 8, 1666-1673.

Papers under Submission or Review
Sutter, E., Wu, S., and Reeves, A. (1993). The ERG elicited by red/green modulation in
relation to isoluminance. Submitted to Journal of the Optical Society of America (A).
Schirillo, J. and Reeves, A. (1993). Field additivity of the middle-wave cone pathway.
Submitted to Vision Research.
Yang, J. and Reeves, A. (1993). Bottom-up visual image processing probed with weighted
Hermite polynomials. Submitted to Neural Networks.

Published Abstracts of Presentations at Meetings (typically one or two para-
graph summaries; all IOVS and ECVP Abstracts are refereed; IOYS refers to
the Investigative Ophthalmology and Visual Science, ARVO Supplement)

Craver-Lemley, C.E., Arterberry, M.E., and Reeves, A. (1993). The effects of orientation
and depth on imagery-induced interference with vernier acuity. 16th ECVP, Edinburgh,
Scotland, .June.
Craver-Lemley, C.E. and Reeves, A. (1992). Imagery-induced interference for acuity
is not due to attentional distraction. Fourth Annual American Psychological Society
Convention, San Diego, California, June.
Reeves, A. and Arend, L.E. (1992). Color constancy. OSA: Advances in Color Vision,
Irvine, California, January.

Reeves, A. and Kurlyo, D. (1993). Attention can enhance orientation processing. IOVS
-?4.

Reeves, A. and McLellan, J. (1993). Saccading left while shifting attenton right. 16th
ECVP, Edinburgh, Scotland, June.
Reeves, A. and Tijus, C. (1990). The pop-out effect in a simple 3D visual matching task.
Cognitiva, Madrid.
Reeves, A. and Tijus, C. (1990). Extremely rapid visual erasure. I(VS 31.
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Reeves, A. and Wu, S. (1991). Color opponency in the PERG. Presented to the annual
meeting of the International Society for Clinical Electrophysiology of Vision, Sarasota,
Florida, April 1991.

Reeves, A., Wu, S., and Sutter, E. (1991). Isoluminance and hetero-chromatic ERG
responses across the retina. IOVS 33.

Reeves, A. and Yang, J. (1990). Contrast linearity and superposition of visual potentials
evoked by pattern-reversing weighted Hermite Polynomials. OSA, Boston, November
1990.

Schirillo, J. and Reeves, A. (1990). Spatial factors determining field additivity of the
middle-wavelength cone pathway. OSA, Boston.

Schirillo, J. and Reeves, A. (1991). Spatial factors and mechanisms of the middle wave-
length cone pathway. IOVS 32.

Ward, A.S., Corwin, J., Reeves, A., and Fukui, T. (MO). Picture.fragment identification
in aging and Alzheimer's disease. New York Academy of Sciences, March 1990.

Wu S., Armington, J.C., and Reeves, A. (1990). Linearity and non-linearity of visual
responses evoked by pattern displacement. IOVS 31.

Wu, S., Armington, J.C., and Reeves, A. (1990). Isolation of middle-wave cones in the
ERG. Perception, 19, 4, A34c (ECVP Supplement).
Wu, S., Sutter, E., and Reeves, A. (1992). Iscluminance in the ERG. OSA: Non-Invasive
Assessment of the Visual System, Sante Fe, NeW Mexico, January.

Yang, J., Peli, E., Goldstein, R., and Reeves, A. (1990). The effects of luminance on
super-threshold contrast matching. IOVS 31.
Yang, J., Peri, E., Goldstein, R., and Reeves, A. (1990). The effect of luminance on
supra-threshold contrast matching. IOVS 31.

Yang, J. and Reeves, A. (1990). A polynomial basis function for vision: Tests with visual
evoked potentials. Perception, 19, 4, A77a (ECVP Supplement).
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